Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

Wijedasa, Lahiru S.; Jauhiainen, Jyrki; Könönen, Mari; Lampela, Maija; Vasander, Harri; LeBlanc, Marie-Claire; Evers, Stephanie; Smith, Thomas E.L.; Yule, Catherine M.; Varkkey, Helena; Lupascu, Massimo; Parish, Faizal; Singleton, Ian; Clements, Gopalasamy R.; Aziz, Sheema Abdul; Harrison, Mark E.; Cheyne, Susan; Anshari, Gusti Z.; Meijaard, Erik; Goldstein, Jenny E.

Published in: Global Change Biology
Publication date: 2017

Publisher rights: Full Open Access Article. Copyright © 1999 - 2017 John Wiley & Sons, Inc. All Rights Reserved
The re-use license for this item is: CC BY-NC-ND
The Document Version you have downloaded here is: Publisher's PDF, also known as Version of record

The final published version is available direct from the publisher website at: 10.1111/gcb.13516

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 22. Aug. 2019
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPELA4, HARRI VASANDER4, MARIE-CLAIRE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJJAARD10,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HEGOUALC’H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PADFIELD7,30,31, SOFYAN KURNIANTO24,32, PANUT HADISISWOYO33, TECK WYN LIM34, SUSAN E. PAGE18, VINCENT GAUCI35, PETER J. VAN DER MEER36, HELEN BUCKLAND37, FABIEN GARNIER38, MICHIEL GERDING90,39, BARBARA KALISZ90, STEPHEN J. CHAPMAN20,21, STEVE FROLKING44, HELEN BUCKLAND27, CHRIS MALINS43, ALICE M. M. WEDEUX56, BEATRICE M. M. WEDEUX57, B. R. R. RIPOLL CAPILLA112, B. RIPOLL CAPILLA117, UWE BALLHORN53, HUA CHEW HO87, AGATA HOSCILO88, SANDRA LOHBERGER53, THEODORE A. EVANS89, NINA YULIANTI90, GRACE BLACKHAM91, ORIZAL92, SIMON HUSSON17, DANIEL MURDIYARSO24,93, SUNITA PANGALA33, LYDIA E. S. COLE34, LUCA TACCONI35, HENDRICK SEHAG91, PRAYOTO TONO96, JANICE S. H. LEE97, GERALD SCHMILEWSKI98, STEPHAN WULFFRAAT99, ERIANTO INDRA PUTRA23,5,100, MEGAN E. CATTAU101, R. S. CLYMO102, ROSS MORRISON103, AAZANI MUJAHID104, JUUKA MIETTINEN105, SOO CHIN LIEW105, SAMU VALPOLA106, DAVID WILSON107, LAURA D’ARCY17, MICHEIL GERING98, SITI SUNDARI108, SARA A. THORNTON17, BARBARA KALISZ90, STEPHEN J. CHAPMAN110, AHMAD SUHAIZI MAT SU111, IMAM BASUKI24,32, MASAYUKI ITOH112, CARL TRAEHOLT113, SEAN SLOAN86, ALEXANDER K. SAYOK114 and ROXANE ANDERSEN115,*

1Department of Biological Sciences, National University of Singapore, 4 Science Drive 4, 117453, Singapore, 2ConservationLinks, 433 Clementi Avenue 3, #01-258, 120433, Singapore, 3Institute of Tropical Forests and Parks, Malaysia, 4University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland, 5Faculté des Sciences de l’Agriculture et de l’Alimentation, 2425, Rue de l’agriculture, Pavillon Paul-Comtois, Bureau 1122, Ville de Québec, QC G1V 0A6, Canada, 6School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, MY 43500, Malaysia, 7Tropical Catchment Research Initiative (TROCAI), Kuala Lumpur, Malaysia, 8School of Natural Sciences &

LETTER TO THE EDITOR

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.
Andersen@uhfщий attaches.
LETTER TO THE EDITOR
The first International Peat Congress (IPC) held in the tropics – in Kuching (Malaysia) – brought together over 1000 international peatland scientists and industrial partners from across the world (‘International Peat Congress with over 1000 participants!’, 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat.

However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b; Wong, 2016) widely read across the region portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture.

Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirm that drained tropical peatlands lose considerable amounts of carbon at high rates (Drösler et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommoin et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Coultwood et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce trans-boundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marthier et al., 2012; Jaffar & Loh, 2014; Chisholm et al., 2016; Huijmen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large-scale fire and haze events are imminent given the extensive areas of now-drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).

In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wosten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrivable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of ‘long-term sustainability of tropical peatland agriculture’.

A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainably managed peatland development have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016, Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwood companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management...
remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbiani, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.

Acknowledgements

Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.

References


© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems.
President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency.

Wong J (2016) Yield of oil palm on peatland can be doubled. The Star.