Focusing of baroclinic tidal energy in a canyon

Vasiliy Vlasenko,¹ Nataliya Stashchuk,¹ Mark E. Inall,² Marie Porter,² and
Dmitry Aleynik²

Corresponding author: V. VLasenko, School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. (vvlasenko@plymouth.ac.uk)

¹School of Marine Science and Engineering, University of Plymouth, UK.

²Scottish Association for Marine Science, Scottish Marine Institute, Oban, UK.
Abstract.

Strong three dimensional focusing of internal tidal energy in the Petite Sole Canyon in the Celtic Sea is analysed using observational data and numerical modelling. In a deep layer (500-800m) in the centre of the canyon shear variance was elevated by an order of magnitude. Corresponding large vertical oscillations of deep isotherms, and a local maximum of horizontal velocity were replicated numerically using the MITgcm. The elevated internal tidal activity in the deep part of the canyon is explained in terms of the downward propagation and focusing of multiple internal tidal beams generated at the shelf break. The near-circular shape of the canyon head and steep bottom topography throughout the canyon (steeper than the tidal beam) create favourable conditions for the lens-like focusing of tidal energy in the canyon's centre. Observations and modeling show that the energy focusing greatly intensifies local diapycnal mixing, that leads to local formation of a baroclinic eddy.
1. Introduction

Oceanic canyons are potential places for significant tidal energy conversion from the
barotropic to baroclinic modes, with major implications for water mass mixing. According
to Hickey [1995], nearly 20% of the shelf edge between Alaska and the equator is dominated
by steep, narrow, and abrupt canyons. Historically, the first and most extensively studied
canyon was La Jolla Canyon (California). The results by Shepard [1974] and Gordon and
Marshall [1976] showed that steep canyons can act as a trap for tidally generated internal
waves. Specifically, it was recognised that the dynamical processes occurring in canyons
strongly depend on the ratio of the maximum bottom steepness \(S_{\text{topo}} = \frac{\partial H}{\partial l} \) (here
\(H(x, y) \) is the water depth, and \(l \) is the direction of the maximum bottom gradient) to
the inclination of the characteristic paths of the internal wave energy propagation

\[
S_{\text{wave}} = \frac{dz}{dl} = \pm \left(\frac{\left(\omega^2 - f^2 \right)}{\left(N^2(z) - \omega^2 \right)} \right)^{1/2}
\]

where \(\omega \) is the tidal frequency, \(f \) is the Coriolis parameter, and \(N(z) \) is the buoyancy
frequency. In other words, in terms of the mechanism of internal wave dynamics, the
following parameter

\[
\alpha(x, y, z) = \frac{S_{\text{topo}}}{S_{\text{wave}}} = \frac{|\frac{\partial H}{\partial l}|}{\left(\frac{\left(\omega^2 - f^2 \right)}{\left(N^2(z) - \omega^2 \right)} \right)^{1/2}}
\]

is the principal measure of the bottom steepness that distinguishes two very different
regimes of tidal energy conversion. Schematically they are presented in Figure 1. For
specificity, the buoyancy frequency measured in a canyon of the Celtic Sea (reported in
[Vlasenko and Stashchuk, 2015]) is used for the analysis, see Figure 1 a.
In a subcritical regime, when the condition $\alpha < 1$ is valid over the whole domain, it is mostly the lower tidal baroclinic modes that are generated. This regime is presented in Figure 1b.

Over “steep” topographies, for which $\alpha > 1$ occurs at least for some fragments of a given slope, the supercritical regime of tidal energy conversion, presented in Figure 1c (below point C), is fulfilled. In this regime internal tidal energy is concentrated in a narrow internal tidal beam (magenta stripe in Figure 1c) that radiates energy away from bottom fragments where $\alpha = 1$. The energy propagates in the tidal beam upward and downward along characteristic line (1) with group velocity C_g while the wave phase propagates across the beam with the phase speed C_p, Figure 1c. In fact, it is not only the point C with $\alpha = 1$ is the place of the beam formation. A wider area A-B where the bottom inclination is close to critical is the place of the beam generation. More on different regimes of tidal energy conversion can be found in Vlasenko et al. [2005]).

Note that the tidal beam is a superposition of many baroclinic modes, and the presence of a beam is evidence of higher mode excitation. For a typical “V”-shaped canyon with $\alpha \geq 1$ the baroclinic tidal energy is trapped inside the canyon, being able only to propagate downward reflecting many times from canyon’s steep flanks without any opportunity of escape.

The importance of the relative bottom steepness α for internal wave dynamics in canyons was acknowledged by Petruncio et al. [1998] in their interpretation of measurements conducted in another well-studied canyon, - Monterey Submarine Canyon. Note, however, that in further analyses (for example Zhao et al. [2012]) the focus was predominantly on
the investigation of the energetic characteristics of internal waves and turbulent mixing
without proper reference to the topographic steepness.

Some studies on the baroclinic dynamics in canyons were conducted for an idealized
bottom profile by Baines [1983]; Grimshaw et al. [1985]. A more realistic model set
up, specifically, the real bottom topography, was taken in a further series of numerical
experiments performed for Monterey Submarine Canyon area: Petruncio et al. [2002]
used POM, Jachec et al. [2006] operated with SUNTANS, and Hall and Carter [2011]
used POM to investigate internal tides in the canyon area. However, the specific role of
the relative steepness α of the canyon topography in the distribution of the baroclinic
wave energy was not investigated in any of these studies. Specifically, the structure of the
baroclinic tidal field in the areas where $\alpha > 1$, a common occurrence, has not hitherto
been discussed in detail.

The purpose of this paper is to interpret the three-dimensional effects of internal tidal
dynamics that are seen to occur in supercritical canyons. In particular, an original obser-
vational data set collected in a supercritical canyon in the Celtic Sea is analysed here in
terms of the focusing of internal tidal energy radiated from the areas with critical bottom
inclination.

2. Observations

The Celtic Sea is a 200 meter deep, wide shelf sea with a large number of headlands
and canyons along its shelf edge, Figure 2a. Observations analysed here were conducted
on the 376-th cruise of the RRS “Discovery” (hereafter D376) in June 2012, as part of the
FASTNET study to quantify the cross shelf transport on the NE Atlantic Ocean margin.
With relevance to this paper, 14 repeat “yo-yo” CTD profiles were conducted at a station
precisely in the middle of the Petite Sole Canyon presented in Figure 2b. Vertical profiles were repeated with approximately one hour time interval to the depth of approximately 1000 m. In addition to the CTD probe, a downward looking TRDI WHM 300kHz LADCP was mounted on the frame, so that each CTD profile was accompanied by a vertical profile of currents.

All 14 “yo-yo” temperature profiles $T_j(z)$ ($j = 1, 2, 3, \ldots, 14$) are presented in Figure 3a by blue lines. The red line shows an equilibrium temperature distribution calculated as an average temperature at each depth. Comparing all individual temperature profiles $T_j(z)$ with the average $T(z)$ one can see that the largest deviations of every individual profile from the average take place in two zones: in the surface 150 m layer, and between 500 m and 900 m depth. Assuming that these deviations were caused by the dynamical processes developing in the canyon, the vertical displacement ζ_j of every individual isotherm on every profile from its equilibrium state (which the averaged temperature profile represents) can be calculated using the following formula:

$$\zeta_j = \frac{|T_j - T|}{\partial T/\partial z}$$

An average profile of isotherms displacements, calculated as $1/14 \sum_{j=1}^{14} \zeta_j(z)$, is presented in Figure 3b. It shows that the maximum vertical displacements of isotherms, up to 45 m, are located in deep water, between 600 and 800 m depth.

Note that the maximum baroclinic horizontal velocities at the “yo-yo” station were, as expected, recorded by the LADCP in the surface layer. However, Figure 3b suggests that a comparable contribution of the 600-800 m depth layer to the internal wave energy is also expected. In order to quantify the kinetic energy of dynamical processes developing at the “yo-yo” station, an average profile of horizontal velocities for all 14 LADCP sampling...
was calculated as follows

$$U(z) = \frac{1}{14} \sum_{j=1}^{14} \sqrt{u_j^2(z) + v_j^2(z)}.$$

Here $u_j(z)$ and $v_j(z)$ ($j = 1, 2, \ldots, 14$) are eastward and northward velocities.

The mean profile of $U(z)$ is presented in Figure 3c (magenta line). It shows the velocity maximum at the free surface as well as a secondary local maxima at the depth of 680 m which coincides with the position the maximum vertical displacement and a broad region of elevated currents between 600 m and 800 m, produced presumably by the action of internal waves.

As a proxy-measure for the relative strength of diapycnal mixing, we follow the method of Polzin et al. [2002] in computing the buoyancy-normalised LADCP shear in overlapping segments (50% overlap), each of 128 meters in vertical extent. The spectra for each segment were then integrated between vertical wavelengths of 25 m to 128 m, to give 14 profiles of shear variance, a property that scales with the diapycnal eddy diffusivity. The time averaged vertical profile of the shear variance (Figure 3d) demonstrates a relative 7-fold increase below 700 m depth, with a broad maximum at 780 m. The necessary segmentation of the data results in loss of vertical resolution in comparison with temperature or velocity profiles, but nevertheless a consistent deep maximum in fine-structure derived vertical mixing is clearly apparent.

In order to bring more clarity to the interpretation of these relatively sparse observations and to understand the reasons for apparent internal wave energy and vertical mixing intensification in the deep part of the canyon, a series of numerical experiments was conducted.
3. Modelling

The fully non-linear non-hydrostatic MITgcm was used to model internal tides in the

canyon and the surrounding area (see Figure 2b). In the main part of the model domain

the horizontal and vertical resolutions were 100 m and 10 m, respectively. In order to avoid

any spurious boundary reflections, an exponentially increasing horizontal grid step near

the lateral boundaries was used that guaranteed an accurate numerical solution within

the internal model domain without any signals reflected from the boundaries during at

least 10 tidal cycles.

The tidal forcing was set in the model by a tidal potential added to the right hand side

of the momentum balance equations. Its intensity was chosen using [Egbert and Erofeeva,

2002] in such a way as to reproduce tidal velocities recorded by moored ADCP current

meters deployed during D376. Spatial distribution of tidal ellipses is shown in Figure 2d.

A vertical stratification was introduced into the model after setting the tidal forcing for

a homogeneous fluid. The temperature and salinity profiles were taken from the direct

CTD measurements at the yo-yo station.

The Richardson number dependent parameterisation for vertical viscosity ν and diffus-

sivity κ introduced in [Pacanowski and Philander, 1981] was used:

$$\nu = \frac{\nu_0}{(1 + \alpha \text{Ri})^n} + \nu_b, \quad \kappa = \frac{\nu}{(1 + \alpha \text{Ri})} + \kappa_b.$$

Here Ri is the Richardson number, Ri = $N^2(z)/(u_z^2 + v_z^2)$, u and v are the components of

horizontal velocity; $N(z)$ is the buoyancy frequency $N^2(z) = -g/\rho(\partial \rho/\partial z)$ in which g is

the acceleration due to gravity and ρ is the water density; $\nu_b=10^{-5}$ m2 s$^{-1}$ and $\kappa_b=10^{-5}$ m2

s$^{-1}$ are the background viscosity, and diffusivity, respectively; $\nu_0=1.5 \cdot 10^{-2}$ m2 s$^{-1}$, $\alpha=5$

and $n=1$ are the adjustable parameters. Such a parametrisation increases ν and κ in
areas where the Richardson number is small. The horizontal viscosity and diffusivity were set to a constant value of 0.5 m² s⁻¹. More details on the model initialization and input parameters can be found in Vlasenko et al. [2014].

The model was forced by M_2 tidal harmonic which is predominant in the area (Egbert and Erofeeva [2002]). The principal question to be addressed by the modelling efforts is to identify the cause of the highly energetic internal wave activity in the centre of the canyon below 500 m depth. The modelling evidence of this intensification in deep water is seen in Figure 4 where the amplitude of the model-predicted horizontal velocities

$$U_{\text{max}}(x, y, z) = \sqrt{u_{\text{max}}^2(x, y, z) + v_{\text{max}}^2(x, y, z)}.$$

is presented. Here $u_{\text{max}}(x, y, z)$ and $v_{\text{max}}(x, y, z)$ are amplitudes of the eastward and northward velocities found over one tidal cycle at the position (x, y, z).

Nine horizontal slices of the velocity U_{max} at depths of between 300 m and 700 m presented in Figure 4 reveal quite a curious tendency. In the surface layers, i.e. shallower than 500 m, the wave energy is mostly concentrated at the periphery of the canyon corresponding to the shelf break area. However, below this depth the regions with high energy concentration are mostly located within the centre of the canyon, not around its edge. This finding is consistent with the observational profiles shown in Figures 3b and c that reveal the energy maximum at approximately 700 m depth recorded at the CTD station in the middle of the canyon.

Such a focusing of internal wave energy in the canyon’s centre can be explained in terms of a superposition of several tidal beams generated at the shelf edge on the periphery of the canyon and radiating downward toward the centre of the canyon, as it is shown in Figure 1c. Indeed, analysis of the bottom steepness (2) has shown that $\alpha << 1$ in the
surrounding shelf area, but \(\alpha > 1 \) in the central part of the canyon, see Figure 5. The red zones here, situated along the shelf break, separate the areas of subcritical shelf from the supercritical abyssal part of the canyon.

Figure 5 demonstrates that the main part of the canyon topography is supercritical for semi-diurnal internal tidal waves. As a result, according to theory [Vlasenko et al., 2005], the internal tide in the canyon should take a form of tidal beams generated at the shelf break around the canyon periphery which radiate downward toward the centre of the canyon, as is shown in the scheme depicted in Figure 6. Bearing in mind that the canyon head has a near-circular shape, it is expected that it can function like an optical lens focusing wave energy into its centre. Evidence for that interpretation is presented in Figure 7a for the vertical cross-section depicted in Figure 2b by a white line. Three tidal beams can be identified in Figure 7a (the characteristic lines, equation (1), are shown here by thin white lines). The tidal beam \(a-b-c \) is generated at the shelf break point, at \(b \), and propagates downward along characteristic line \(b-c \). The tidal beam wave system, resembling a St.Andrews cross, is generated at the saddle point \(e \). The tidal energy propagates from this point along four characteristic lines, \(e-g \), \(e-d \), \(e-h \), and \(e-f \).

It is interesting and relevant to note that the two tidal beams generated at the opposite sides of the canyon, viz. \(b-c \) and \(e-f \) meet in the centre of the canyon in the layer between 600 and 800 m depths which is consistent with the position of the deep-water maxima in vertical displacement, horizontal velocity and shear variance seen in Figures 3d.

As seen from Figure 5, similar conditions of the energy focusing discussed above, i.e. position of sub-, and supercritical areas, are valid also for many other cross-sections passing through the centre of the canyon. In other words, the tidal energy is converted at
many particular areas around the canyon periphery, and is then radiated towards its centre and accumulated there at the depths of between 500 and 800 m, as is observed in the CTD/LADCP analysis.

Such focusing of wave energy in the canyon’s centre should increase the associated level of local water mixing there, since energy cannot accumulate indefinitely. Elevated shear variance is testament to greater elevated mixing at depth (Figure 3d). As a result of intensified local diapycnal mixing in the centre of the canyon, a quasi stationary density (temperature) gradient is formed across the canyon, as shown in Figure 7b (the same cross-section as in Figure 7a). Convergence and divergence of isotherms at the depths of between 500 m to 900 m is clearly seen here from two pairs of isotherms colored in white and magenta. Initially (before the model run) the distance between both (parallel) isolines was equal to 100 m: the upper and lower “white” isotherms were initially at depths of 650 m and 750 m, respectively; the upper and lower “magenta” isotherms were initially at depths of 800 m and 900 m. After ten cycles of tidal action the distance between the two groups of isotherms was modified: at some positions they converged, and at others they diverged. Figure 8 shows the difference between isotherms initially centred at 700 m (Figure 8a) and at 850 m (Figure 8b). It is interesting that the convergence and divergence of isolines is opposite for the two depth pairs, Figure 8a, b.

The formation by diapycnal mixing of quasi-stationary horizontal pressure gradients suggests the existence of geostrophically balanced baroclinic eddies. Quasi-stationary eddy features are clearly seen in Figure 9 in the velocity vectors at depths of 450 m, 600 m and 700 m. The eddy around the topography bank is seen at a depth of 450 m where the tidal beam is still located close to the canyon flank and the shelf edge. However vortical
motions are absent in the centre of the canyon at this depth (450 m). According to the findings presented above, the tidal energy is mostly concentrated beneath 450 m and in the centre of the canyon. Here a baroclinic eddy with cyclonic rotation at 600 m depth and anti-cyclonic rotation at 700 m depth is clearly seen.

To find observational evidence of the predicted baroclinic eddy generated in the middle of the canyon, the following analysis of the LADCP data was performed. First, the barotropic tidal velocities U_{j}^{bar} and V_{j}^{bar} were found by averaging of the instant velocity profiles:

$$U_{j}^{\text{bar}} = \frac{1}{H_{j}} \int_{0}^{H_{j}} u_{j}(z) dz;$$

$$V_{j}^{\text{bar}} = \frac{1}{H_{j}} \int_{0}^{H_{j}} v_{j}(z) dz.$$

$j = 1, 2, 3, \cdots, 14$. Second, the barotropical tidal signal was removed from the sampling data using the following procedure:

$$u_{j}^{\text{int}} = u_{j} - U_{j}^{\text{bar}};$$

$$v_{j}^{\text{int}} = v_{j} - V_{j}^{\text{bar}}.$$

The velocity vectors $(u_{j}^{\text{int}}, v_{j}^{\text{int}})$ at depths of 600 m and 750 m along with the model predicted vectors are presented in Figures 10a and 10b by black arrows.

It is clear that the remainder baroclinic signal contains both stationary currents and non-stationary internal waves. It is also not free from a random signal that always is present in any observational data set. Note however, that looking at the cluster of velocity vectors as a whole that was recorded in the very same place with one-hour time interval one can discern a consistent pattern. It seems that the general (average) direction of the black arrow clusters in Figures 10a and 10b is consistent with that predicted by the model,
i.e. the anti-cyclonic and cyclonic rotation in depths 600 m and 750 m layers, respectively. This can be considered as further evidence that tidal energy focusing in the centre of the canyon is responsible for the formation of baroclinic eddies there.

4. Discussion and conclusions

Submarine canyons are common bathymetric features at many of the world’s shelf edge regions. They can trap internal wave energy holding it towards the head of canyons in a converging wave-guide that can lead to a high level of turbulent mixing there. This mechanism was discussed by Baines [1983]; Gardner [1989]; Gordon and Marshall [1976]; Hotchkiss and Wunsch [1982]. Note, however, that the aforementioned papers appeal predominantly to a two-dimensional concept of this mechanism. In reality one should operate with three-dimensional characteristic surfaces of a 3D wave equation rather than with the characteristic lines of its 2D counterpart. As a result of the three-dimensionality, the characteristic lines emanating from flanks of a concave topography can focus in its centre producing a spot with high levels of internal wave energy and mixing. This paper deals with the three-dimensional aspects of these effects of the focusing mechanism.

The possibility of intensification of baroclinic tidal energy due to wave interference was recently reported in a number of theoretical papers. Carter [2010] analysing model output for baroclinic tide in the Monterey Bay region testified interference of internal waves generated at different sectors of the bay. It was found that the model predicted up to 5 times increase of the baroclinic tidal flux close to the Monterey canyon axis located in the centre of the bay. It was hypothesized there that the effect was created thanks to topographic focusing, although this fact was not clarified, specifically in terms of the beam-like structure of baroclinic tides or supercriticality of the bottom topography.
In fact, the Monterey Bay area is much larger area than just the Monterey Bay canyon.

In light of the present study it is important that similar 3D focusing of baroclinic tidal energy, even being mostly theoretically discovered, is reported for this and other areas.

Similar effect of the interference of baroclinic tidal energy radiated from scattered multiple sources was also reported by Rainville et al. [2010] for the Hawaiian Ridge area. As distinct from the present study, mostly horizontal interference of the baroclinic tidal waves was studied, however the effect of baroclinic tidal energy superposition was clearly demonstrated.

The most recent model study conducted by Zhang et al. [2014] for an idealized and supercritical for M_2 tide canyon confirmed an asymmetry of internal tide in the canyon, which presumably is a consequence of the the along-shore effects of propagating internal tidal wave. In fact, they focus mostly on resonant effects of internal tide generation in the canyon, although some details on baroclinic tidal energy focusing are also reported. With relevance to the present study, Zhang et al. [2014] reported the beamlike structure of baroclinic tides near the supercritical canyon, with a difference in deepward and shoreward structures, although their interference in the canyon area was not demonstrated.

Model output always allows us to study the process of wave focusing in detail, however in reality it is quite difficult to observe this effect in-situ. For the Celtic Sea we have found not only theoretical but also observational evidence of the baroclinic tidal energy focusing in the middle of the canyon. The measurements were conducted during D376 in the centre of the Petite Sole Canyon situated at the shelf edge of the Celtic sea (see Figures 2). CTD and LDCP data collected at a station in the middle of the canyon revealed
large vertical oscillations of isotherms (up to 45 m, Figures 2b) and local maximum of horizontal currents (up to 0.12 ms\(^{-1}\), Figures 3c) in the layer between 500 and 800 m.

The possibility of such an inherently three dimensional focusing mechanism of baroclinic tidal energy was confirmed in a series of numerical experiments conducted using the MITgcm forced by \(M_2\) tidal harmonic. The high internal tidal activity in the deep part of the canyon (Figures 4) is treated here in terms of downward propagation and focusing of internal tidal beam generated at the shelf break. The specific circular shape of the canyon, coupled with the steep bottom topography below the shelf break (steeper than tidal beam) in all parts of the canyon create favourable conditions for the tidal energy focusing in the canyon’s centre, see Figures 6. Both observations and MITgcm simulations have also shown that the tidal energy focusing intensifies local diapycnal mixing, that can lead to formation of a baroclinic eddy below 450 m depth in the central part of the canyon, see Figures 9. Evidence consistent with the presence of the cyclonic and anti-cyclonic rotation in the canyon centre was found also in in-situ data.

The importance of the results is that the effect of the focussing of baroclinic tidal energy in 3D configuration is quite a typical situation in many areas. This means that the results on the baroclinic tidal energy focusing reported here can have much wider application rather than just circular-shape canyons.

Acknowledgments. This work was supported by the Natural Environment Research Council Grant FASTNEt (award NE/I030259/1). The used data are available at http://www.sams.ac.uk/fastnet.
References

Grimshaw, R.H.J., P.G. Baines, and R.C. Bell (1985), The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons. *Dyn. Atmos. and Oceans*, 9, 85–120.

Figure 1. a) Buoyancy frequency measured in the Celtic Sea. b)-c) Schemes of the generation regime over subcritical (b) and supercritical (c) topographies. Red lines in panel (b) show characteristics (1). Magenta area in panel (c) depicts a tidal beam.

Figure 2. a) Bathymetry of the Celtic Sea. White rectangle shows the position of the canyon. b) Zoom of the Petite Sole Canyon area. The position of the yo-yo CTD station is depicted by a magenta dot. Tidal ellipses showing the intensity of the model forcing are presented by black contours.
Figure 3. a) Temperature distribution for 14 “yo-yo” CTD mooring (blue lines) with averaged temperature (red line). b) Depth dependant amplitude of temperature deviation. c) Distribution of horizontal velocity from LADCP (grey lines) and mean profile (magenta line). d) Distribution of shear variance, all profiles shown by gray and mean profile with magenta.
Figure 4. Horizontal distribution of the amplitudes of horizontal velocity at different depths.
Figure 5. a) Spatial distribution of parameter α: blue areas $\alpha < 1$, red stripes $\alpha = 1$, and clear areas with $\alpha > 1$.
Figure 6. Scheme of intersection of characteristic lines inside idealized canyon and formation of eddy.
Figure 7. a) The largest values of horizontal velocity and b) averaged temperature distribution along the cross-section (white line in Figure 2a). The upper white isotherm corresponds to temperature 10.55°C and the lower one to 10.1°C. Similar values for two magenta isolines are 10.0°C and 9.3°C.

Figure 8. The distance between isotherms shown in Figure 7b in white (panel a) and in magenta (panel b).
Figure 9. Velocity vectors of the model predicted baroclinic eddy generated inside the canyon.
Figure 10. a) and b) Model predicted anti-cyclonic and cyclonic eddies at the depths of 600 m and 750 m (shown by red and blue arrows, respectively). Baroclinic currents recorded by LADCP at 14 “yo-yo” stations at the same depths are shown by black arrows.