A comparison of catch rates of artificial lures from an automated handline fishery at Shetland, UK
Macdonald, Paul; Laurenson, Chevonne H.; Johnson, Arthur; Tait, Leslie

Published in:
Fisheries Research
Publication date:
2009

The re-use license for this item is:
CC BY-NC
The Document Version you have downloaded here is:
Early version, also known as pre-print

The final published version is available direct from the publisher website at:
10.1016/j.fishres.2008.10.003

Link to author version on UHI Research Database

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the UHI Research Database are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights:

1) Users may download and print one copy of any publication from the UHI Research Database for the purpose of private study or research.
2) You may not further distribute the material or use it for any profit-making activity or commercial gain
3) You may freely distribute the URL identifying the publication in the UHI Research Database

Take down policy
If you believe that this document breaches copyright please contact us at RO@uhi.ac.uk providing details; we will remove access to the work immediately and investigate your claim.

Download date: 29. Dec. 2018
A comparison of catch rates of artificial lures from an automated handline fishery at Shetland, UK.

Paul Macdonald*a, Chevonne H. Laurensona, Arthur Johnsona, Lesliet. -

aNAC Marine Centre, Port Arthur, Scalloway, Shetland, ZE1 0UN, Scotland.

*Tel.: +44 1595 772331; fax: +44 1595 772001. E-mail address: paul.macdonald@nafc.uhi.ac.uk

Abstract

Automated handlining (jig fishing) has recently been trialled in waters around Shetland, UK. Although different types and colours of artificial lures are commercially available there is a paucity of information available on the effects of either lure design or lure colour on resulting catches. We compared the catch rates of (1) five colours of rubber eel tube lures; and (2) five different designs of artificial lure commonly used in handline fisheries. Lure colour did not significantly affect catches of pollack (Pollachius pollachius), saithe (Pollachius virens), cod (Gadus morhua), ling (Molva molva) or tusk (Brosme brosme). Cod showed a preference for lower hooks on the six hooks per reel set-up when lures were black and pollack showed a preference for lower hooks when the lures were blue. There were no significant differences in catches of saithe, cod, ling or tusk between the five lure types. However, catches of pollack on a novel 'sonic' lure were lower than on other lures. No evidence of a preference for any hook position on the reels was found with any of the lure types.

Key words: Jig fishing; Artificial lure; Handline; Pollack; Saithe; Shetland
1. Introduction

Automated handlining, or jig fishing, is an established method for targeting a number of commercially important whitefish species. Jig fishing became mechanized in the 1970s when electric machines were developed (Valdemarsen, 2001). Many modern jigging reels are equipped with a programmable computerized motor which allows the fishermen to store programmes tailored to specific fish species or seabed types.

A number of northern European countries including Iceland and Faroe have well developed commercial automated handline fisheries (Anon., 2006). In 2006 more than 8,800 tonnes of fish, predominantly cod and saithe, were landed from the Icelandic handline fishery (Anon., 2007). However, despite its success in these areas the method has never become widely established by vessels fishing in Scottish waters.

At Shetland only a small number of inshore vessels currently utilize automated jigging machines, principally as a seasonal supplement to the more traditional shellfish fishery. The main target species are pollack (*Pollachius pollachius*) (locally known as lythe), cod (*Gadus morhua*), saithe (*Pollachius virens*) and ling (*Molva molva*).

Automated handlining is generally regarded as an ecosystem friendly fishing method (Bjordal, 2002) and in today’s climate of consumer awareness this is a factor of increasing importance. Environmental benefits include reduced fuel consumption in comparison to trawl fisheries (Macdonald *et al.*, 2007). This also has direct economic benefits to the fisher. Hook and line fisheries are also known to select for larger individuals (Huse *et al.*, 2000), resulting in reduced discards. In recent years, a number of handline fisheries have
voluntarily entered certification schemes designed to reassure consumers that fish are caught responsibly and from sustainable fisheries (Jaffry et al., 2004). The perceived benefits of automated handlining have resulted in a renewed interest in it as an alternative fishing method, particularly for smaller inshore vessels. Although there is some information on the effects of hook size on catch rates (Johannessen, 1983; Skeide et al., 1986; Huse and Fernö, 1990) and on bait type and size on catch rates (Bjordal, 1983; Fernö and Huse, 1983; Løkkeborg and Bjordal, 1995) there is very little published information on the effectiveness of different artificial lures. Jig fishing operates by attracting fish to artificial lures that are ‘jigged’ up and down in the water column. A variety of different types of lure are available (Fig. 1) and in each case lures are designed to trigger fish feeding behaviour. Some of the more popular and commonly used lures include rubber eel tube lures, imitation sand eels, lures designed to imitate octopus and squid, and a variety of other plastic and metal lures designed to mimic small injured prey species. Lures are also sold in a wide variety of colours. The use of fluorescent material as an added stimulus has been adopted by some manufacturers. More recently lures designed to emit sonic vibrations, which are thought to act as a fish attractant, have been developed and are being marketed. However, the success of artificial lures is still, to a great extent, highly dependant on the feeding motivation of the target species and this can be affected by a number of environmental factors. In Shetland there is a common belief among fishermen that the use of specific lure types and colours result in higher catches. There is also a great deal of speculation regarding which colours and types of lure catch greater quantities
of fish and, as such, views can often be contradictory. One common perception is that red coloured lures have a tendency to out fish others. Furthermore, some fishermen believe that imitation sand eels such as rubber eel tube lures and Red Gill rubber eels produce higher returns.

In order to test these hypotheses we recorded and compared the catches of rubber eel tube lures in five different colours (black, pale blue, fluorescent green, fluorescent red, white). We also investigated the effectiveness of five commonly used, commercially available lure types (Red Gill rubber eel, rubber eel tube, muppet, Sonic lure, spoon).

2. Materials and methods

Fishing trials were undertaken on the Atlantia II LK502, a 10 m wooden hulled fishing vessel, using five Oilwind automated jigging reels. The study took place between 21 August and 15 September 2006 and in March 2007. Fishing locations were chosen based on previous experience and weather conditions. Locations are shown in Fig. 2.

Jigging reels were programmed to the original factory setting. The gear on each reel was lowered to the seabed then raised by 0.9 m, jigged up and down five times, by a distance of 9.1 m each time, before being dropped to the seabed to repeat the cycle. The cycle was repeated until either fish on the hooks triggered automatic hauling or the operator set the machine to haul.

Each reel was equipped with 300 m of 181 kg Dynema main line, an 18.3 m, 136 kg monofilament shock leader, and a nylon ring of 40 mm inside diameter attached to the end of the leader. Terminal fishing gear consisted of six hook
lure rigs weighted by a 3.2 kg lead sinker attached to the end of the rig. Lures were numbered 1 to 6 from top to bottom respectively.

2.1. Coloured lures

Rubber eel lure rigs were constructed from Marlin 113.1 kg / 1.60 mm clear main line with size 3/0 (58 kg) black brass barrel swivels attached to the main line. Swivels were attached at intervals of 0.9 m on either side of each lure.

Coloured lures were constructed from Mustad rubber eel hooks size 10/0, coloured PVC or silicone tubing with 6 mm inside and 8 mm outside diameter, and size 1/0 (79 kg) nickel crane swivels. The five colours of PVC or silicone tubing used were black, pale blue, fluorescent green, fluorescent red and white. Lures were attached to loops made in the main line at approximately 1.83 m intervals.

2.2. Lure types

Red Gill rubber eel, rubber eel tube, muppet, spoon and sonic lure rigs were each constructed from Marlin 250lb (113.1 kg / 1.60 mm) clear main line with size 2/0 (58 kg) three way barrel swivels attached to the main line, by the eye on opposite ends of the swivel. Swivels were attached at approximately 1.83 m intervals. Red Gill lures and muppets were equipped with size 8/0 Mustad O’Shaughnessy hooks while spoons and sonic lures were supplied with hooks (approximately size 8/0) attached. Each of the lures were then attached to the remaining eye on the swivel of their respective rigs using an 8-10 cm length of 1.1 mm nylon fishing line and a crimp, which provided rigidity in the snood.

In each experiment a modified Latin square design was employed with periodical rotations of gear ensuring that each lure type or lure colour was positioned on each reel once and next to each of the remaining lure types or
colours twice throughout a total of five rotations. For each fish captured, the
jigging reel number, lure type and species of fish were recorded. The hook
number on which each fish was caught was also recorded.
One-way and 2-way ANOVAs were used as appropriate to test for differences
in catches and to investigate possible hook preferences. Where appropriate,
post-hoc Tukey tests were also undertaken.

3. Results

3.1. Comparison of lure colour

Twenty hours fishing, consisting of five gear rotations, yielded a total of 492
fish represented by five different species (Table 1). Catches were highly
variable between the five rotations, however, there was no significant
difference in the total number of fish caught by lure colour ($F_{4,20} = 0.614,\
P>0.05$). By species, there was no significant effect of lure colour on the
numbers of pollack ($F_{4,20} = 0.553, P>0.05$), cod ($F_{4,20} = 0.430, P>0.05$) or
saithe ($F_{4,20} = 0.046, P>0.05$) that were caught. Only small quantities of ling
and tusk were caught.
The total numbers of fish caught at each of the six hook positions for each lure
colour are shown in Fig. 3. Catches of cod varied significantly between hook
position on the black lure rig ($F_{5,29} = 4.08, P<0.01$), with a post-hoc Tukey test
indicating that catches on hook position 6 were significantly higher than
positions 1, 2, 3 and 4 ($P<0.05$). The number of cod caught on each of the
remaining four colours did not vary significantly between the 6 hook positions
(Black: $F_{5,29} = 1.24$; White: $F_{5,29} = 0.94$; Fluorescent red: $F_{5,29} = 0.35$;
Fluorescent green: $F_{5,29} = 1.82$, all $P>0.05$). Pollack catches varied
significant between the hook positions on the blue lure rig ($F_{5,29} = 3.46$, $P<0.05$). A post-hoc Tukey test indicated that the significant differences lay between catches on hooks 5 and 6 ($P < 0.05$). Catches of pollack on the remaining four colours did not vary significantly between the 6 hook positions (White: $F_{5,29} = 2.08$; Fluorescent red: $F_{5,29} = 1.94$; Pale blue: $F_{5,29} = 0.49$; Fluorescent green: $F_{5,29} = 1.56$, all $P>0.05$). There was no significant effect of hook position on catches of saithe on the five different colours (: Black: $F_{5,29} = 0.04$, White: $F_{5,29} = 0.07$; Red: $F_{5,29} = 0.06$; Blue: $F_{5,29} = 0.01$; Green: $F_{5,29} = 0.13$, all $P>0.05$). The small quantities of ling and tusk were all caught on hook 6.

3.2. Comparison of lure type

A total of 237 fish representing 6 species, (including a by catch of Atlantic mackerel (*Scomber scombrus*)), were caught during 10 hours fishing (Table 2). There was a significant difference in the total number of fish caught on the different lure types ($F_{4,20} = 0.95$, $P<0.05$). The greatest numbers of fish were caught on muppet lures followed by rubber eel, spoon, Red Gill and Sonic lures respectively. There was a significant effect of lure type on the numbers of pollack that were caught ($F_{4,20} = 3.20$, $P<0.05$) with a post hoc Tukey test indicating that significant differences lay between sonic and muppet as well as sonic and rubber eel lures. Lure type did not have a significant effect on the numbers of saithe that were caught ($F_{4,20} = 0.27$, $P>0.05$). Catches of cod, ling and tusk were low during this experiment.

The total catch at each hook position on the five lure rigs for pollack and saithe are shown in Fig. 4. Pollack did not exhibit a significant pattern of hook preference for any of the lure designs (Red Gill: $F_{5,29} = 1.18$; rubber eel: $F_{5,29}$}
Similarly, there was no significant pattern of hook preference found in saithe catches on the five lure designs (Red Gill: $F_{5,29} = 0.88$; rubber eel: $F_{5,29} = 0.59$; muppet: $F_{5,29} = 0.25$; sonic: $F_{5,29} = 0.83$; spoon: $F_{5,29} = 0.25$, all $P > 0.05$). The small numbers of cod, ling and tusk were all captured on hook 6.

4. Discussion

The work presented here represents a first attempt at determining whether catch rates differ between artificial lures commonly deployed by jig fishermen in Shetland. Previous studies on the catch rates of artificial lures are limited (Hsieh et al., 2001) and this study is the first of its kind for commercially important whitefish species in the north east Atlantic.

The results of the study indicate that pollack, saithe and cod do not exhibit significant preferences for any of the lure colours deployed. Hsieh et al., (2001) also reported that, of ten different coloured lures trialled, no single colour exhibited significantly higher hooking rates of the spotted mackerel (Scomber australasicus).

The success of different coloured lures may alter at various times of year as a result of changes in light levels, water clarity and available prey species.

During the months that this study was conducted, August and September, pollack in the North Sea are known to feed mainly on lesser sandeels (Ammodytes marinus), while Atlantic herring (Clupea harengus harengus) is thought to be the main component of saithe diet during the same period (Hoines and Bergstad, 1999).
Catch rates of coloured lures may also be affected by the visual detection abilities of the target species. Gadoid species such as cod and saithe are known to utilize available light by attacking prey from below, using the increased visibility of prey items against downwelling light (Jobling, 1996). However, visual cues are limited to a relatively small distance with many fish being unable to see more than ten or fifteen metres (Diana, 1995). Other stimuli known to assist predators in the detection of food items, possibly to a greater degree than colour vision, include sounds generated by feeding fish, low pressure frequency waves and chemoreception (Bone et al., 1996). Therefore, visual cues such as colour may only perform a minor role in the overall decision of determining whether to attack or reject a prey item.

Results also indicate that pollack and saithe do not exhibit significant preferences towards any of the lure designs trialled in this study. However, although there was no overall significant difference in the number of fish caught on the five different lure types, significantly lower numbers of pollack were caught on sonic lures. The sonic lure is a novel artificial lure which was beingtrialled for the first time in Shetland waters. This suggests that, for pollack at least, the lure is less efficient than the more commonly used Red Gill, rubber eel, muppet and spoon lures. It also implies that these more frequently used lures are relatively effective for attracting and capturing the species targeted in this fishery.

Each of the lure types deployed here was designed to imitate species that the target fish would ordinarily prey upon. Red Gill and rubber eels are designed to imitate sand eels and other small fish. The movement of the fish in the water during jigging cycles is intended to imitate injured fish, possibly
suggesting an easy target to the predator. Muppet lures are designed to
imitate small octopus and squid, with the jigging motion providing lifelike
movements and jerks. Spoon lures, generally silver in colour, provide flickers
of light during jigging intended to resemble injured fish. Sonic lures were
reportedly developed to create a vibration that fish find difficult to resist.
The similar catch rates of saithe and pollack on the four commonly used lure
designs (excluding sonic lures) may be indicative of relatively low levels of
feed selectivity exhibited by these species. Saithe and pollack are known to
have a varied diet including Atlantic herring, Norway pout (Trisopterus
esmarkii), poor cod (Trisopterus minutus), haddock (Melanogrammus
eaeglefinus) and lesser sandeel (Hoines and Bergstad, 1999).
As with lure colour, the effectiveness of a specific lure type at a given time of
year does not necessarily guarantee its efficacy at other times. A number of
commercially targeted species including cod and haddock are known to
exhibit seasonal variation in the diet (Hoines and Bergstad, 1999). As such,
specific lure types may be more effective in certain conditions than in others.
The species caught during this study are representative of the species caught
by vessels using jigging gear at Shetland. Catches by those vessels are
predominantly of saithe and pollack which are typically caught on unbaited
artificial lures. Terminal gear aimed at targeting cod, ling and tusk is more
traditionally baited, which may explain the relatively low numbers of those
species caught here. Conventional differences in gear deployment are
indicative of the various bathymetric distributions of the target species. Saithe
and pollack are pelagic to benthopelagic species while cod, ling and tusk are
typically benthic or benthopelagic (Cohen et al., 1990). As such it may be
difficult to identify one specific lure which may be equally efficient at capturing all of the target species in the fishery. Distinctions in the bathymetric distribution of the species were evident from catches on the various hook positions. For both parts of the study pollack and saithe catches were distributed somewhat evenly between the 6 hook positions while catches of cod, ling and tusk were primarily on hook 6, the closest to the seabed. This suggests that the use of multiple hooks on each jigging reel when targeting saithe and pollack may increase returns while catches of ling, cod and tusk are more reliant on hooks fishing on or near the seabed. Variability in catches during the rotations was typical of the temporal and spatial variability in catch rates encountered in our wider study. This highlights the considerable potential for further investigations into the effects of factors such as time of day and water depth on the catch rates of specific gear types. The preference for lower hook positions exhibited by cod and pollack also has the potential to be further investigated to determine a possible optimum gear configuration for these species.

5. Conclusion

The results of this study indicate that commercially important species such as saithe and pollack did not exhibit significant preferences for any one specific colour or design of artificial lure commonly used in automated handline fisheries. However, a significantly lower catch rate of the previously untried sonic lure suggests that species including pollack do exhibit preferences towards the lures traditionally deployed by fishermen. As such, the success of novel artificial lures is not guaranteed, suggesting the need for trial periods
prior to full scale utilization. Further work, including a long term study, may
highlight changes in the effectiveness of specific lures in differing
environmental conditions. Such information has the potential to assist
fishermen in selecting the most appropriate lures for different conditions,
consequently maximising returns.

Acknowledgements
This study was carried out during a wider investigation into the commercial
viability of jig fishing in Shetland coastal waters, partly funded by the
European Union under the Financial Instrument for Fisheries Guidance
(FIFG). We are grateful to all the fishermen who provided information on
fishing grounds around Shetland.

References
Anon., 2006. ICES: Report of the North-west Working Group. Available at:
http://www.ices.dk/iceswork/wgdetailacfm.asp?wg=NWWG
Anon., 2007. Statistics Iceland. Available at:
http://www.statice.is/Statistics/Fisheries/Catch-and-value-of-catch
Bjordal, A., 2002. The use of technical measures in responsible fisheries:
Bjordal, Å., 1983. "Full scale trials with new hook designs and reduced size of
bait." ICES CM/B, 7pp.

Johannessen, T., 1983. "Influence of hook and bait size on catch efficiency and length selection in longlining for cod (Gadus morhua L.) and haddock."
MSc, University of Bergen, Bergen, 109pp.

ICES, CM/M, 17pp.

Table 1 Summary of catches of each species on different coloured lures.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Lure colour</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Black</td>
<td>White</td>
<td>Fluorescent Green</td>
<td>Fluorescent Red</td>
<td>Pale Blue</td>
</tr>
<tr>
<td>Pollachius pollachius</td>
<td>Pollack</td>
<td>54</td>
<td>51</td>
<td>35</td>
<td>72</td>
<td>51</td>
</tr>
<tr>
<td>Gadus morhua</td>
<td>Atlantic cod</td>
<td>13</td>
<td>12</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Pollachius virens</td>
<td>Saithe</td>
<td>39</td>
<td>42</td>
<td>25</td>
<td>36</td>
<td>32</td>
</tr>
<tr>
<td>Molva molva</td>
<td>Ling</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brosme brosme</td>
<td>Tusk</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All species</td>
<td></td>
<td>107</td>
<td>106</td>
<td>69</td>
<td>121</td>
<td>89</td>
</tr>
</tbody>
</table>
Table 2 Summary of catches of each species on different lure types.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Lure type</th>
<th>Red Gill</th>
<th>Rubber eel</th>
<th>Muppet</th>
<th>Sonic</th>
<th>Spoon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollachius pollachius</td>
<td>Pollack</td>
<td></td>
<td>21</td>
<td>27</td>
<td>28</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>Gadus morhua</td>
<td>Atlantic cod</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pollachius virens</td>
<td>Saithe</td>
<td></td>
<td>18</td>
<td>28</td>
<td>29</td>
<td>15</td>
<td>28</td>
</tr>
<tr>
<td>Molva molva</td>
<td>Ling</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brosme brosme</td>
<td>Tusk</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Scomber scombrus</td>
<td>Atlantic mackerel</td>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>All species</td>
<td></td>
<td></td>
<td>41</td>
<td>56</td>
<td>62</td>
<td>23</td>
<td>55</td>
</tr>
</tbody>
</table>
Fig. 1 Artificial lures commonly deployed by commercial fishing vessels at Shetland. From top left: Mustad rubber eels; plastic squid or ‘muppets’; spoon lures; Red Gill rubber eels.
Fig. 2 Map of the Shetland Isles with specific fishing locations highlighted.
Fig. 3 Numbers of cod, pollack and saithe caught at each hook position on each of the coloured lure rigs.
Fig. 4 Numbers of pollack and saithe caught at each hook position on each of the lure types.