Wind-controlled export of Antarctic Bottom Water out of the Weddell Sea

Loic Jullion, Samuel Jones, Alberto C. Naveira Garabato, Michael P. Meredith

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


Recent studies suggest that the variability in Antarctic Bottom Water (AABW) properties in the Scotia Sea on time scales up to decadal may be linked to changes in the baroclinicity of the Weddell gyre, with vertical variations in the density structure at the gyre's northern edge acting to control the export of AABW over the South Scotia Ridge and toward the mid-latitude South Atlantic. We test this hypothesis by analysing the AABW properties in fifteen occupations of the SR1b hydrographic section (1993–2009) in eastern Drake Passage alongside possible forcings as derived from atmospheric reanalysis data. We show that variability in the wind stress over the Weddell gyre leads changes in AABW properties in the SR1b section by approximately five months. The sign of the lagged correlation is consistent with the notion of the AABW export from the Weddell Sea being controlled by the gyre's baroclinic adjustment to wind forcing on time scales of several months. Variability in the regional winds is found to be closely linked to the Southern Annular Mode (SAM). These results suggest that there may be a causal relationship between the SAM's positive tendency observed in recent decades and the subsequent warming of AABW detected across much of the Atlantic Ocean.
Original languageEnglish
JournalGeophysical Research Letters
Issue numberL09609
Publication statusPublished - 14 May 2010


  • Antarctic Bottom Water
  • Southern Annular Mode
  • Drake Passage


Dive into the research topics of 'Wind-controlled export of Antarctic Bottom Water out of the Weddell Sea'. Together they form a unique fingerprint.

Cite this