TY - JOUR
T1 - Variation in egg size and offspring phenotype among and within seven Arctic charr morphs
AU - Beck, Samantha V.
AU - Räsänen, Katja
AU - Kristjánsson, Bjarni K.
AU - Skúlason, Skúli
AU - Jónsson, Zophonías O.
AU - Tsinganis, Markos
AU - Leblanc, Camille A.
N1 - Funding Information:
We thank Anett Reilent for her help in the rearing of offspring and aging of females. This research was funded by the Icelandic Research Fund (grant numbers 141360 and 173814‐051).
Publisher Copyright:
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
PY - 2022/10/18
Y1 - 2022/10/18
N2 - Maternal effects have the potential to alter early developmental processes of offspring and contribute to adaptive diversification. Egg size is a major contributor to offspring phenotype, which can influence developmental trajectories and potential resource use. However, to what extent intraspecific variation in egg size facilitates evolution of resource polymorphism is poorly understood. We studied multiple resource morphs of Icelandic Arctic charr, ranging from an anadromous morph—with a phenotype similar to the proposed ancestral phenotype—to sympatric morphs that vary in their degree of phenotypic divergence from the ancestral anadromous morph. We characterized variation in egg size and tested whether egg size influenced offspring phenotype at early life stages (i.e., timing of- and size at- hatching and first feeding [FF]). We predicted that egg size would differ among morphs and be less variable as morphs diverge away from the ancestral anadromous phenotype. We also predicted that egg size would correlate with offspring size and developmental timing. We found morphs had different egg size, developmental timing, and size at hatching and FF. Egg size increased as phenotypic proximity to the ancestral anadromous phenotype decreased, with larger eggs generally giving rise to larger offspring, especially at FF, but egg size had no effect on developmental rate. The interaction between egg size and the environment may have a profound impact on offspring fitness, where the resulting differences in early life-history traits may act to initiate and/or maintain resource morphs diversification.
AB - Maternal effects have the potential to alter early developmental processes of offspring and contribute to adaptive diversification. Egg size is a major contributor to offspring phenotype, which can influence developmental trajectories and potential resource use. However, to what extent intraspecific variation in egg size facilitates evolution of resource polymorphism is poorly understood. We studied multiple resource morphs of Icelandic Arctic charr, ranging from an anadromous morph—with a phenotype similar to the proposed ancestral phenotype—to sympatric morphs that vary in their degree of phenotypic divergence from the ancestral anadromous morph. We characterized variation in egg size and tested whether egg size influenced offspring phenotype at early life stages (i.e., timing of- and size at- hatching and first feeding [FF]). We predicted that egg size would differ among morphs and be less variable as morphs diverge away from the ancestral anadromous phenotype. We also predicted that egg size would correlate with offspring size and developmental timing. We found morphs had different egg size, developmental timing, and size at hatching and FF. Egg size increased as phenotypic proximity to the ancestral anadromous phenotype decreased, with larger eggs generally giving rise to larger offspring, especially at FF, but egg size had no effect on developmental rate. The interaction between egg size and the environment may have a profound impact on offspring fitness, where the resulting differences in early life-history traits may act to initiate and/or maintain resource morphs diversification.
KW - developmental plasticity
KW - diversification
KW - egg size
KW - freshwater
KW - maternal effects
KW - resource polymorphism
UR - http://www.scopus.com/inward/record.url?scp=85141165433&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141165433&partnerID=8YFLogxK
U2 - 10.1002/ece3.9427
DO - 10.1002/ece3.9427
M3 - Article
AN - SCOPUS:85141165433
SN - 2045-7758
VL - 12
JO - Ecology and Evolution
JF - Ecology and Evolution
IS - 10
M1 - e9427
ER -