Validation of a hydrodynamic model for a curved, multi-paddle wave tank

Istvar Gyongy, Jean-Baptiste Richon, Tom Bruce, Ian Bryden

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
774 Downloads (Pure)

Abstract

Obtaining a hydrodynamic model for a wave tank has many benefits, from allowing the useable test zone to be identified, to helping with the tuning of the wavemaker controllers. This paper explores a first-order, boundary element method (BEM) that has been previously proposed for modelling wave tanks, applying the method to a tank with a unique, curved geometry. In a series of experiments, the model is shown to provide a good representation of the wave profile across the tank. Inherent limitations in the method are also identified: in the case when only a single paddle is moved, significant, un-modelled second-order spurious waves are found to emerge. Moreover, the representation of the wave absorbers by a simple, partially reflecting surface does not adequately reproduce the measured spatial variation in the reflection coefficient.
Original languageEnglish
Pages (from-to)39
Number of pages14
JournalElsevier Applied Ocean Research
Volume44
DOIs
Publication statusPublished - Jan 2014

Keywords

  • Wave tank
  • wavemaker
  • boundary element method
  • WAMIT
  • Experimental Validation

Fingerprint

Dive into the research topics of 'Validation of a hydrodynamic model for a curved, multi-paddle wave tank'. Together they form a unique fingerprint.

Cite this