Abstract
In recent years, the remote sensing of marine plastic litter has been rapidly evolving and the technology is most advanced in the visible (VIS), near-infrared (NIR), and short-wave infrared (SWIR) wavelengths. It has become clear that sensing using VIS-SWIR bands, based on the surface reflectance of sunlight, would benefit from complementary measurements using different technologies. Thermal infrared (TIR) sensing shows potential as a novel method for monitoring macro plastic litter floating on the water surface, as the physics behind surface-leaving TIR is different. We assessed a thermal radiance model for floating plastic litter using a small UAV-grade FLIR Vue Pro R 640 thermal camera by flying it over controlled floating plastic litter targets during the day and night and in different seasons. Experiments in the laboratory supported the field measurements. We investigated the effects of environmental conditions, such as temperatures, light intensity, the presence of clouds, and biofouling. TIR sensing could complement observations from VIS, NIR, and SWIR in several valuable
ways. For example, TIR sensing could be used for monitoring during the night, to detect plastics invisible to VIS-SWIR, to discriminate whitecaps from marine litter, and to detect litter pollution over clear, shallow waters. In this study, we have shown the previously unconfirmed potential of using TIR sensing for monitoring floating plastic litter.
ways. For example, TIR sensing could be used for monitoring during the night, to detect plastics invisible to VIS-SWIR, to discriminate whitecaps from marine litter, and to detect litter pollution over clear, shallow waters. In this study, we have shown the previously unconfirmed potential of using TIR sensing for monitoring floating plastic litter.
Original language | English |
---|---|
Article number | 3179 |
Journal | Remote Sensing |
Volume | 14 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2 Jul 2022 |
Keywords
- plastic litter; thermal infrared; natural waters; pollution; UAV