Abstract
The proteome of any system is a dynamic entity, such that the intracellular concentration of a protein is dictated by the relative rates of synthesis and degradation. In this work, we have analyzed time-dependent changes in the incorporation of a stable amino acid resolved precursor, a protocol we refer to as "dynamic SILAC", using 1-D gel separation followed by in-gel digestion and LC-MS/MS analyses to profile the intracellular stability of almost 600 proteins from human A549 adenocarcinoma cells, requiring multiple measures of the extent of labeling with stable isotope labeled amino acids in a classic label-chase experiment. As turnover rates are acquired, a profile can be built up that allows exploration of the 'dynamic proteome' and of putative features that predispose a protein to a high or a low rate of turnover. Moreover, measurement of the turnover rate of individual components of supramolecular complexes provides a unique insight in processes of protein complex assembly and turnover.
Original language | English |
---|---|
Pages (from-to) | 104-12 |
Number of pages | 9 |
Journal | Journal of Proteome Research |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2009 |
Keywords
- Cell Line, Tumor
- Databases, Protein
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Neoplastic
- Humans
- Kinetics
- Mass Spectrometry
- Peptide Mapping
- Protein Processing, Post-Translational
- Proteins
- Proteome
- Proteomics
- Ribosomes
- Stochastic Processes
- Time Factors