TY - JOUR
T1 - The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates
AU - MitchellID, Lucy J.
AU - White, Piran C.L.
AU - Arnold, Kathryn E.
N1 - Publisher Copyright:
© 2019 Mitchell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/7/10
Y1 - 2019/7/10
N2 - Despite advances in technology, there are still constraints on the use of some tracking devices for small species when gathering high temporal and spatial resolution data on movement and resource use. For small species, weight limits imposed on GPS loggers and the consequent impacts on battery life, restrict the volume of data that can be collected. Research on home range and habitat selection for these species should therefore incorporate a consideration of how different sampling parameters and methods may affect the structure of the data and the conclusions drawn. However, factors such as these are seldom explicitly considered. We applied two commonly-used methods of home range estimation, Movement-based Kernel Density Estimation (MKDE) and Kernel Density Estimation (KDE) to investigate the influence of fix rate, tracking duration and method on home range size and habitat selection, using GPS tracking data collected at two different fix rates from a small, aerially-insectivorous bird, the European nightjar Caprimulgus europaeus. Effects of tracking parameters varied with home range estimation method. Fix rate and tracking duration most strongly explained change in MKDE and KDE home range size respectively. Total number of fixes and tracking duration had the strongest impact on habitat selection. High between- and within-individual variation strongly influenced outcomes and was most evident when exploring the effects of varying tracking duration. To reduce skew and bias in home range size estimation and especially habitat selection caused by individual variation and estimation method, we recommend tracking animals for the longest period possible even if this results in a reduced fix rate. If accurate movement properties, (e.g. trajectory length and turning angle) and biologically-representative movement occurrence ranges are more important, then a higher fix rate should be used, but priority habitats can still be identified with an infrequent sampling strategy.
AB - Despite advances in technology, there are still constraints on the use of some tracking devices for small species when gathering high temporal and spatial resolution data on movement and resource use. For small species, weight limits imposed on GPS loggers and the consequent impacts on battery life, restrict the volume of data that can be collected. Research on home range and habitat selection for these species should therefore incorporate a consideration of how different sampling parameters and methods may affect the structure of the data and the conclusions drawn. However, factors such as these are seldom explicitly considered. We applied two commonly-used methods of home range estimation, Movement-based Kernel Density Estimation (MKDE) and Kernel Density Estimation (KDE) to investigate the influence of fix rate, tracking duration and method on home range size and habitat selection, using GPS tracking data collected at two different fix rates from a small, aerially-insectivorous bird, the European nightjar Caprimulgus europaeus. Effects of tracking parameters varied with home range estimation method. Fix rate and tracking duration most strongly explained change in MKDE and KDE home range size respectively. Total number of fixes and tracking duration had the strongest impact on habitat selection. High between- and within-individual variation strongly influenced outcomes and was most evident when exploring the effects of varying tracking duration. To reduce skew and bias in home range size estimation and especially habitat selection caused by individual variation and estimation method, we recommend tracking animals for the longest period possible even if this results in a reduced fix rate. If accurate movement properties, (e.g. trajectory length and turning angle) and biologically-representative movement occurrence ranges are more important, then a higher fix rate should be used, but priority habitats can still be identified with an infrequent sampling strategy.
UR - http://www.scopus.com/inward/record.url?scp=85069579806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069579806&partnerID=8YFLogxK
UR - https://doi.org/10.5285/aa20f8c4-bbdb-4dfa-82b4-b9b3fd8f34eb
U2 - 10.1371/journal.pone.0219357
DO - 10.1371/journal.pone.0219357
M3 - Article
C2 - 31291318
AN - SCOPUS:85069579806
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e0219357
ER -