Abstract
The accuracy of prediction of stable atmospheric boundary layers depends on the parameterization of the surface layer which is usually derived from the Monin–Obukhov similarity theory. In this article, several surface-layer models in the format of velocity and potential temperature Deacon numbers are compared with observations from CASES99, Cardington, and Halley datasets. The comparisons were hindered by a large amount of scatter within and among datasets. Tests utilizing R2 demonstrated that the quasi-normal scale elimination (QNSE) theory exhibits the best overall performance. Further proof of this was provided by 1D simulations with the Weather Research and Forecasting (WRF) model.
Original language | English |
---|---|
Pages (from-to) | 83-88 |
Number of pages | 6 |
Journal | Atmospheric Science Letters |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 18 Aug 2015 |
Fingerprint
Dive into the research topics of 'The importance of surface layer parameterization in modeling of stable atmospheric boundary layers'. Together they form a unique fingerprint.Profiles
-
Philip Anderson
- SAMS UHI - Senior Lecturer in Air-Sea Interaction
- Energy Innovation Team
Person: Academic - Research and Teaching or Research only