The evolution of modular artificial neural networks for legged robot control

Sethuraman Muthuraman, Grant Maxwell, Christopher MacLeod

Research output: Chapter in Book/Report/Conference proceedingChapter

6 Citations (Scopus)

Abstract

This paper outlines a system that allows a neural network, which is used to control a robot, to evolve in a structured but open-ended way. The final intention of the research is that, as the network develops, intelligence will eventually emerge. This is accomplished by placing the robot in a developing environment and allowing both this environment and the robot's body form, sensors and actuators to become more complex and sophisticated as time passes. As this development takes place, neural network modules are added to the control system. The result is that the robot's complexity and that of the neural network grows with its environment. Results are presented showing the system in operation on a simulated legged robot.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsOkyay Kaynak, Ethem Alpaydin, Erkki Oja, Lei Xu
PublisherSpringer-Verlag
Pages488-495
Number of pages8
ISBN (Print)3540404082, 9783540404088
DOIs
Publication statusPublished - 2003

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2714
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Fingerprint

Dive into the research topics of 'The evolution of modular artificial neural networks for legged robot control'. Together they form a unique fingerprint.

Cite this