Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings

Anastasia L. Patterson, Brandon Wenning, Georgios Rizis, David R. Calabrese, John A. Finlay, Sofia C Franco, Ronald N. Zuckermann, Anthony S. Clare, Edward J. Kramer, Christopher K. Ober, Rachel A. Segalman

    Research output: Contribution to journalArticle

    19 Citations (Scopus)

    Abstract

    Poly(dimethylsiloxane) (PDMS)- and poly(ethylene oxide) (PEO)-based block copolymer coatings functionalized with amphiphilic, surface-active, and sequence-controlled oligomer side chains were studied to directly compare the effects of hydrophilicity, hydrogen bonding, and monomer sequence on antifouling performance. Utilizing a modular coating architecture, structurally similar copolymers were used to make direct and meaningful comparisons. Amphiphilic character was imparted with non-natural oligopeptide and oligopeptoid pendant chains made from oligo-PEO and surface-segregating fluoroalkyl monomer units. Surface analysis revealed rearrangement for all surfaces when moved from vacuum to wet environments. X-ray photoelectron spectroscopy (XPS) spectra indicated that the polymer backbone and oligomer interactions play key roles in the surface presentation. Biofouling assays using the macroalga Ulva linza showed that the presence of peptoid side chains facilitated the removal of sporelings from the PDMS block copolymer, with removal matching that of a PDMS elastomer standard. The lack of a hydrogen bond donor in the peptoid backbone likely contributed to the lower adhesion strength of sporelings to these surfaces. Both the initial attachment and adhesion strength of the diatom Navicula incerta were lower on the coatings based on PEO than on those based on PDMS. On the PEO coating bearing the blocky peptoid sequence, initial attachment of N. incerta showed no measurable cell density.

    Original languageEnglish
    Pages (from-to)2656-2667
    Number of pages12
    JournalMacromolecules
    Volume50
    Issue number7
    Early online date23 Mar 2017
    DOIs
    Publication statusPublished - 11 Apr 2017

      Fingerprint

    Cite this