TY - JOUR
T1 - Removal behaviour of NSAIDs from wastewater using a P-functionalised microporous carbon
AU - Pap, Sabolc
AU - Taggart, Mark A.
AU - Shearer, Lisa
AU - Li, Yuan
AU - Radovic, Sanja
AU - Turk Sekulic, Maja
PY - 2021/2/28
Y1 - 2021/2/28
N2 - Diclofenac (DCF), naproxen (NPX) and ibuprofen (IBF) are three of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs) worldwide. They are widely detected in natural waters due to their persistence in wastewater treatment, and their removal is desirable in future wastewater management worldwide. In this study, “acid catalyst” functionalisation and subsequent carbonisation were adopted to synthesise a P-doped microporous carbonous adsorbent (CScPA) for NSAID removal. The CScPA was evaluated in depth for its adsorption performance (i.e., isotherms, kinetics and thermodynamics of adsorption at lab-scale). The CScPA had a large surface area (791.1 m2/g) and good porosity (0.392 cm3/g), which facilitated a high maximum adsorption capacity of 62.02 mg/g for a NSAID mixture. Thermodynamic data indicated that the adsorption of these NSAIDs was an endothermic process determined by physisorption (low-energy interactions). XPS analysis revealed the specific interactions involved in the adsorption process, including π-π and n-π electron donor-acceptor (EDA) interactions and hydrogen (H-) bonding. The Freundlich isotherm and Elovich kinetic model provided the best fit to the experimental results, which indicated surface heterogeneity (of the CScPA) and cooperative adsorption mechanisms. The adsorption process was shown to have potential to be applied to real wastewater effluent containing NSAIDs at low environmentally relevant concentrations (removal reached > 90% at 10 μg/L). Analysis of different implementation and cost related factors suggested that the CScPA has the potential for use with “real-world” water matrices, offering a sustainable treatment process for pharmaceutical remediation in wastewater.
AB - Diclofenac (DCF), naproxen (NPX) and ibuprofen (IBF) are three of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs) worldwide. They are widely detected in natural waters due to their persistence in wastewater treatment, and their removal is desirable in future wastewater management worldwide. In this study, “acid catalyst” functionalisation and subsequent carbonisation were adopted to synthesise a P-doped microporous carbonous adsorbent (CScPA) for NSAID removal. The CScPA was evaluated in depth for its adsorption performance (i.e., isotherms, kinetics and thermodynamics of adsorption at lab-scale). The CScPA had a large surface area (791.1 m2/g) and good porosity (0.392 cm3/g), which facilitated a high maximum adsorption capacity of 62.02 mg/g for a NSAID mixture. Thermodynamic data indicated that the adsorption of these NSAIDs was an endothermic process determined by physisorption (low-energy interactions). XPS analysis revealed the specific interactions involved in the adsorption process, including π-π and n-π electron donor-acceptor (EDA) interactions and hydrogen (H-) bonding. The Freundlich isotherm and Elovich kinetic model provided the best fit to the experimental results, which indicated surface heterogeneity (of the CScPA) and cooperative adsorption mechanisms. The adsorption process was shown to have potential to be applied to real wastewater effluent containing NSAIDs at low environmentally relevant concentrations (removal reached > 90% at 10 μg/L). Analysis of different implementation and cost related factors suggested that the CScPA has the potential for use with “real-world” water matrices, offering a sustainable treatment process for pharmaceutical remediation in wastewater.
KW - Economic viability
KW - Pharmaceutical removal
KW - Tailored surface chemistry
KW - Wastewater treatment
KW - XPS analysis
UR - http://www.scopus.com/inward/record.url?scp=85091799593&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091799593&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2020.128439
DO - 10.1016/j.chemosphere.2020.128439
M3 - Article
AN - SCOPUS:85091799593
SN - 0045-6535
VL - 264
JO - Chemosphere
JF - Chemosphere
IS - Part 1
M1 - 128439
ER -