TY - JOUR
T1 - Quantification of Selected Endogenous Hydroxy-oxylipins from Tropical Marine Macroalgae
AU - Kumari, Puja
AU - Reddy, Radhakrishnan
AU - Jha, Bhavanath
N1 - Copyright: Copyright 2014 Elsevier B.V., All rights reserved. Acknowledgments: We thank Prof. Wendy Stirk, Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermartizburg, South Africa for editing the final version of the revised manuscript. The Chief Conservator of Forest and Wildlife, Jamnagar, Gujarat is also thanked for permitting us to collect the algal samples from Kalubhar Island (off-Vadinar Coast) in the Gulf of Kutch, The Head, Analytical Sciences is acknowledged for providing the HPLC facility and Mr. Harshad Brahmbhatt for technical help. CSIR is gratefully acknowledged for financial support for this study and for senior research fellowship (CSIR-SRF) to the first author (PK).
The author was not affiliated to SAMS at the time of publication
PY - 2014/2/1
Y1 - 2014/2/1
N2 - The present study investigated the contents of hydroxy-oxylipins hydroxyoctadecadienoic acids (HODEs), hydroxyoctadecatrienoic acids (HOTrEs), and hydroxyeicosatetraenoic acids (HETEs) in 40 macroalgae belonging to the Chlorophyceae, Rhodophyceae and, Phaeophyceae. The hydroxy-oxylipin content was low and ranged from 0.14 ± 0.012 ng/g (Codium dwarkense) to 8,161.9 ± 253 ng/g (Chaetomorpha linum) among the Chlorophyceae, 345.4 ± 56.8 ng/g (Scytosiphon lomentaria) to 2,574.5 ± 155.5 ng/g (Stoechospermum marginatum) among the Phaeophyceae, and 19.4 ± 2.2 ng/g (Laurencia cruciata) to 1,753.1 ± 268.2 ng/g in Gracilaria corticata v. folifera) among the Rhodophyceae on fresh weight basis (p ≤ 0.01). The concentrations of C18-oxylipins were greater than C20-oxylipins in all the investigated macroalgae, except forUlva linza, Codium sursum, Dictyopteris deliculata, S. marginatum, Sargassum tenerrimum, Gracilaria spp. (except G. textorii), Rhodymenia sonderi, and Odonthalia veravalensis.The macroalgal species rich in HODEs, HOTrEs, and HETEs were segregated using principal component analysis. The red macroalgae showed the highest contents of HETEs, followed by brown and green macroalgae in consistent with their PUFA profiles. The relative contents of isomeric forms of oxylipins displayed the species-specific positional selectivity of lipoxygenase (LOX) enzyme in macroalgae. All the species exhibited 13-LOX specificity for linoleic acid analogous of higher plants, while 21 out of 40 species showed 9-LOX selectivity for the oxygenation of α-linolenic acid. No trend was observed for the oxygenation of arachidonic acid in macroalgae, except for in the Halymeniales, Ceramiales (except L. cruciata), and Corallinales. This study infers that LOX products, octadecanoids and eicosanoids, described in macroalgal taxa were similar to those of higher plants and mammals, respectively, and thus can be utilized as an alternative source of chemically synthesized oxylipin analogues in therapeutics, cosmetics, and nutritional oil supplements.
AB - The present study investigated the contents of hydroxy-oxylipins hydroxyoctadecadienoic acids (HODEs), hydroxyoctadecatrienoic acids (HOTrEs), and hydroxyeicosatetraenoic acids (HETEs) in 40 macroalgae belonging to the Chlorophyceae, Rhodophyceae and, Phaeophyceae. The hydroxy-oxylipin content was low and ranged from 0.14 ± 0.012 ng/g (Codium dwarkense) to 8,161.9 ± 253 ng/g (Chaetomorpha linum) among the Chlorophyceae, 345.4 ± 56.8 ng/g (Scytosiphon lomentaria) to 2,574.5 ± 155.5 ng/g (Stoechospermum marginatum) among the Phaeophyceae, and 19.4 ± 2.2 ng/g (Laurencia cruciata) to 1,753.1 ± 268.2 ng/g in Gracilaria corticata v. folifera) among the Rhodophyceae on fresh weight basis (p ≤ 0.01). The concentrations of C18-oxylipins were greater than C20-oxylipins in all the investigated macroalgae, except forUlva linza, Codium sursum, Dictyopteris deliculata, S. marginatum, Sargassum tenerrimum, Gracilaria spp. (except G. textorii), Rhodymenia sonderi, and Odonthalia veravalensis.The macroalgal species rich in HODEs, HOTrEs, and HETEs were segregated using principal component analysis. The red macroalgae showed the highest contents of HETEs, followed by brown and green macroalgae in consistent with their PUFA profiles. The relative contents of isomeric forms of oxylipins displayed the species-specific positional selectivity of lipoxygenase (LOX) enzyme in macroalgae. All the species exhibited 13-LOX specificity for linoleic acid analogous of higher plants, while 21 out of 40 species showed 9-LOX selectivity for the oxygenation of α-linolenic acid. No trend was observed for the oxygenation of arachidonic acid in macroalgae, except for in the Halymeniales, Ceramiales (except L. cruciata), and Corallinales. This study infers that LOX products, octadecanoids and eicosanoids, described in macroalgal taxa were similar to those of higher plants and mammals, respectively, and thus can be utilized as an alternative source of chemically synthesized oxylipin analogues in therapeutics, cosmetics, and nutritional oil supplements.
KW - Eicosanoid
KW - Macroalgae
KW - Octadecanoid
KW - Oxylipins
KW - PUFAs
U2 - 10.1007/s10126-013-9533-0
DO - 10.1007/s10126-013-9533-0
M3 - Article
SN - 1436-2228
VL - 16
SP - 74
EP - 87
JO - Marine Biotechnology
JF - Marine Biotechnology
IS - 1
ER -