Plastic debris increases circadian temperature extremes in beach sediments

Jennifer L. Lavers, Jack Rivers-Auty, Alexander L. Bond

    Research output: Contribution to journalArticlepeer-review

    39 Citations (Scopus)

    Abstract

    Plastic pollution is the focus of substantial scientific and public interest, leading many to believe the issue is well documented and managed, with effective mitigation in place. However, many aspects are poorly understood, including fundamental questions relating to the scope and severity of impacts (e.g., demographic consequences at the population level). Plastics accumulate in significant quantities on beaches globally, yet the consequences for these terrestrial environments are largely unknown. Using real world, in situ measurements of circadian thermal fluctuations of beach sediment on Henderson Island and Cocos (Keeling) Islands, we demonstrate that plastics increase circadian temperature extremes. Particular plastic levels were associated with increases in daily maximum temperatures of 2.45 °C and decreases of daily minimum by − 1.50 °C at 5 cm depth below the accumulated plastic. Mass of surface plastic was high on both islands (Henderson: 571 ± 197 g/m2; Cocos: 3164 ± 1989 g/m2), but did not affect thermal conductivity, specific heat capacity, thermal diffusivity, or moisture content of beach sediments. Therefore, we suggest plastic effects sediment temperatures by altering thermal inputs and outputs (e.g., infrared radiation absorption). The resulting circadian temperature fluctuations have potentially significant implications for terrestrial ectotherms, many of which have narrow thermal tolerance limits and are functionally important in beach habitats.

    Original languageEnglish
    Article number126140
    JournalJournal of Hazardous Materials
    Volume416
    DOIs
    Publication statusPublished - 15 Aug 2021

    Keywords

    • Indian Ocean
    • Marine debris
    • Sediment properties
    • South Pacific
    • Thermal gradient

    Fingerprint

    Dive into the research topics of 'Plastic debris increases circadian temperature extremes in beach sediments'. Together they form a unique fingerprint.

    Cite this