Parameterising resuspension in aquaculture waste deposition modelling

Thomas Adams, Kevin Black, Kenny Black, Trevor Carpenter, Adam Hughes, Helena Reinardy, Rebecca Weeks

Research output: Contribution to journalArticle

7 Downloads (Pure)


Sustainable expansion of global aquaculture depends on a thorough understanding of environmental impacts. Open water culture operations produce waste food and faeces, the benthic impacts of which are a focus of regulation. Seabed interactions of wastes are complex, depending on current velocity, seabed substrate and waste material characteristics. The accuracy achieved in modelling intensity and spatial extent of impacts is contingent upon the representation of this interaction, and its implications for resuspension. We used benthic flumes to study resuspension processes at 11 salmon aquaculture sites, covering a range of sediment types. Erosion rates and critical entrainment stress were computed at the cage edge, and between 100-500 m away, characterising seabed erodibility in highly impacted and less-impacted sediments. Heavily impacted cage-edge sediments had an erosion threshold (mean 0.02 N m-2) that was an order of magnitude lower, and markedly less heterogeneous, than that of nearby less-impacted sediments (mean across sites 0.19 N m-2). This difference likely reflects a seabed smothered by waste material closer to the depositional centre, and less continuous, thinner and more admixed with underlying sediments farther out. Bed erosion rates were found to be a linear function of excess stress. The results provide important information on how benthic flumes can be deployed to collect spatial and temporal data for parameterisation of erosion and entrainment processes in numerical waste transport simulation models such as DEPOMOD, and the comparatively large field-based data set should contribute to the goal of allowing more realistic representation of particulate waste in these models.
Original languageEnglish
Pages (from-to)401-415
Number of pages15
Early online date24 Sep 2020
Publication statusE-pub ahead of print - 24 Sep 2020


  • aquaculture
  • deposition
  • benthic impacts
  • resuspension
  • depomod

Fingerprint Dive into the research topics of 'Parameterising resuspension in aquaculture waste deposition modelling'. Together they form a unique fingerprint.

Cite this