TY - JOUR
T1 - Novel role for low molecular weight plasma thiols in nitric oxide-mediated control of platelet function
AU - Crane, Michael S
AU - Ollosson, Richard
AU - Moore, Kevin P
AU - Rossi, Adriano G
AU - Megson, Ian L
PY - 2002
Y1 - 2002
N2 - Nitric oxide (NO) is a powerful antiplatelet agent, but its notoriously short biological half-life limits its potential to prevent the activation of circulating platelets. Here we used diethylamine diazeniumdiolate (DEA/NO) as an NO generator to determine whether the antiplatelet effects of NO are prolonged by the formation of a durable, plasma-borne S-nitrosothiol reservoir. Preincubation of both platelet rich plasma (PRP) and washed platelets (WP) with DEA/NO (2 microm) for 1 min inhibited collagen-induced platelet aggregation by 82 +/- 5 and 91 +/- 2%, respectively. After 30 min preincubation with DEA/NO, NO was no longer detectable in either preparation, but aggregation remained markedly inhibited (72 +/- 7%) in PRP. In contrast, the inhibitory effect in WP was almost completely lost at this time (5 +/- 3%) but was partially restored (39 +/- 10%) in WP containing human serum albumin (1%) and fully restored by co-incubation with albumin and the low molecular weight (LMW) thiols, glutathione, (5 microm), cysteinyl-glycine (10 microm), or cysteine (10 microm). This NO-mediated effect was not seen with LMW thiols in the absence of albumin and was associated with S-nitrosothiol formation. Our results demonstrate that LMW thiols play an important role in both the formation and activation of an S-nitrosoalbumin reservoir that significantly prolongs the duration of action of NO.
AB - Nitric oxide (NO) is a powerful antiplatelet agent, but its notoriously short biological half-life limits its potential to prevent the activation of circulating platelets. Here we used diethylamine diazeniumdiolate (DEA/NO) as an NO generator to determine whether the antiplatelet effects of NO are prolonged by the formation of a durable, plasma-borne S-nitrosothiol reservoir. Preincubation of both platelet rich plasma (PRP) and washed platelets (WP) with DEA/NO (2 microm) for 1 min inhibited collagen-induced platelet aggregation by 82 +/- 5 and 91 +/- 2%, respectively. After 30 min preincubation with DEA/NO, NO was no longer detectable in either preparation, but aggregation remained markedly inhibited (72 +/- 7%) in PRP. In contrast, the inhibitory effect in WP was almost completely lost at this time (5 +/- 3%) but was partially restored (39 +/- 10%) in WP containing human serum albumin (1%) and fully restored by co-incubation with albumin and the low molecular weight (LMW) thiols, glutathione, (5 microm), cysteinyl-glycine (10 microm), or cysteine (10 microm). This NO-mediated effect was not seen with LMW thiols in the absence of albumin and was associated with S-nitrosothiol formation. Our results demonstrate that LMW thiols play an important role in both the formation and activation of an S-nitrosoalbumin reservoir that significantly prolongs the duration of action of NO.
U2 - 10.1074/jbc.M208608200
DO - 10.1074/jbc.M208608200
M3 - Article
C2 - 12297511
SN - 0021-9258
VL - 277
SP - 46858
EP - 46863
JO - The Journal of Biological Chemistry
JF - The Journal of Biological Chemistry
IS - 49
ER -