TY - JOUR
T1 - Negative feedback in the cold
T2 - Ice retreat produces new carbon sinks in Antarctica
AU - Peck, L. S.
AU - Barnes, D. K.A.
AU - Cook, A. J.
AU - Fleming, A. H.
AU - Clarke, A.
N1 - © 2009 Blackwell Publishing Ltd
The author was not affiliated to SAMS at the time of publication
PY - 2010/9/15
Y1 - 2010/9/15
N2 - Feedbacks on climate change so far identified are predominantly positive, enhancing the rate of change. Loss of sea-ice, increase in desert areas, water vapour increase, loss of tropical rain forest and the restriction of significant areas of marine productivity to higher latitude (thus smaller geographical zones) all lead to an enhancement of the rate of change. The other major feedback identified, changes in cloud radiation, will produce either a positive feedback, if high level clouds are produced, or a negative feedback if low level clouds are produced. Few significant negative feedbacks have been identified, let alone quantified. Here, we show that the loss of ice shelves and retreat of coastal glaciers around the Antarctic Peninsula in the last 50 years has exposed at least 2.4 × 104 km2 of new open water. We estimate that these new areas of open water have allowed new phytoplankton blooms containing a total standing stock of ∼5.0 × 105 tonnes of carbon to be produced. New marine zooplankton and seabed communities have also been produced, which we estimate contain ∼4.1 × 105 tonnes of carbon. This previously unquantified carbon sink acts as a negative feedback to climate change. New annual productivity, as opposed to standing stock, amounts to 3.5 × 106 tonnes yr-1 of carbon, of which 6.9 × 105 tonnes yr-1 deposits to the seabed. By comparison the total aboveground biomasses of lowland American tropical rainforest is 160-435 tonnes ha-1. Around 50% of this is carbon. On this basis the carbon held in new biomass described here is roughly equivalent to 6000-17 000 ha of tropical rainforest. As ice loss increases in polar regions this feedback will become stronger, and eventually, over thousands to hundreds of thousands of years, over 50 Mtonnes of new carbon could be fixed annually in new coastal phytoplankton blooms and over 10 Mtonnes yr-1 locked in biological standing stock around Antarctica.
AB - Feedbacks on climate change so far identified are predominantly positive, enhancing the rate of change. Loss of sea-ice, increase in desert areas, water vapour increase, loss of tropical rain forest and the restriction of significant areas of marine productivity to higher latitude (thus smaller geographical zones) all lead to an enhancement of the rate of change. The other major feedback identified, changes in cloud radiation, will produce either a positive feedback, if high level clouds are produced, or a negative feedback if low level clouds are produced. Few significant negative feedbacks have been identified, let alone quantified. Here, we show that the loss of ice shelves and retreat of coastal glaciers around the Antarctic Peninsula in the last 50 years has exposed at least 2.4 × 104 km2 of new open water. We estimate that these new areas of open water have allowed new phytoplankton blooms containing a total standing stock of ∼5.0 × 105 tonnes of carbon to be produced. New marine zooplankton and seabed communities have also been produced, which we estimate contain ∼4.1 × 105 tonnes of carbon. This previously unquantified carbon sink acts as a negative feedback to climate change. New annual productivity, as opposed to standing stock, amounts to 3.5 × 106 tonnes yr-1 of carbon, of which 6.9 × 105 tonnes yr-1 deposits to the seabed. By comparison the total aboveground biomasses of lowland American tropical rainforest is 160-435 tonnes ha-1. Around 50% of this is carbon. On this basis the carbon held in new biomass described here is roughly equivalent to 6000-17 000 ha of tropical rainforest. As ice loss increases in polar regions this feedback will become stronger, and eventually, over thousands to hundreds of thousands of years, over 50 Mtonnes of new carbon could be fixed annually in new coastal phytoplankton blooms and over 10 Mtonnes yr-1 locked in biological standing stock around Antarctica.
KW - Benthos
KW - Climate change
KW - Community
KW - Glacier
KW - Ice shelf
KW - Phytoplankton
KW - Polar
KW - Productivity
UR - http://www.scopus.com/inward/record.url?scp=77955287012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77955287012&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2486.2009.02071.x
DO - 10.1111/j.1365-2486.2009.02071.x
M3 - Article
AN - SCOPUS:77955287012
SN - 1354-1013
VL - 16
SP - 2614
EP - 2623
JO - Global Change Biology
JF - Global Change Biology
IS - 9
ER -