Abstract
The northwestern Mediterranean Sea is a well-observed ocean deep convection site. Winter 2012-2013 was an intense and intensely documented dense water formation (DWF) event. We evaluate this DWF event in an ensemble configuration of the regional ocean model NEMOMED12. We then assess for the first time the impact of ocean intrinsic variability on DWF with a novel perturbed initial state ensemble method. Finally, we identify the main physical mechanisms driving water mass transformations.
NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss.
The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5\%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF.
Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases. This article is protected by copyright. All rights reserved.
NEMOMED12 reproduces accurately the deep convection chronology between late January and March, its location off the Gulf of Lions although with a southward shift and its magnitude. It fails to reproduce the Western Mediterranean Deep Waters salinification and warming, consistently with too strong a surface heat loss.
The Ocean Intrinsic Variability modulates half of the DWF area, especially in the open-sea where the bathymetry slope is low. It modulates marginally (3-5\%) the integrated DWF rate, but its increase with time suggests its impact could be larger at interannual timescales. We conclude that ensemble frameworks are necessary to evaluate accurately numerical simulations of DWF.
Each phase of DWF has distinct diapycnal and thermohaline regimes: during preconditioning, the Mediterranean thermohaline circulation is driven by exchanges with the Algerian basin. During the intense mixing phase, surface heat fluxes trigger deep convection and internal mixing largely determines the resulting deep water properties. During restratification, lateral exchanges and internal mixing are enhanced. Finally, isopycnal mixing was shown to play a large role in water mass transformations during the preconditioning and restratification phases. This article is protected by copyright. All rights reserved.
Original language | English |
---|---|
Journal | Journal of Geophysical Research: Oceans |
Early online date | 26 Dec 2016 |
DOIs | |
Publication status | Published - 20 Feb 2017 |
Keywords
- Marginal and semi-enclosed seas, Numerical modeling, Water masses, Turbulence, diffusion, and mixing processes, Air/sea interactions, Ocean deep convection, Dense water transformations, Ocean modelling, Mediterranean sea, Ensemble approach, Model evaluation