Glider observations of enhanced deep water upwelling at a shelf break canyon: A mechanism for cross-slope carbon and nutrient exchange

Marie Porter, Mark Inall, Joanne Hopkins, Matthew Palmer, Andrew Dale, Dmitry Aleynik, John Barth, Claire Mahaffey, David Smeed

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)
131 Downloads (Pure)

Abstract

Using underwater gliders we have identified canyon driven upwelling across the Celtic Sea shelf-break, in the vicinity of Whittard Canyon. The presence of this upwelling appears to be tied to the direction and strength of the local slope current, which is in itself highly variable. During typical summer time equatorward flow, an unbalanced pressure gradient force and the resulting disruption of geostrophic flow can lead to upwelling along the main axis of two small shelf break canyons. As the slope current reverts to poleward flow, the upwelling stops and the remnants of the upwelled features are mixed into the local shelf water or advected away from the region. The upwelled features are identified by the presence of sub-pycnocline high salinity water on the shelf, and are upwelled from a depth of 300 m on the slope, thus providing a mechanism for the transport of nutrients across the shelf break onto the shelf.
Original languageEnglish
Pages (from-to)7575-7588
Number of pages13
JournalJournal of Geophysical Research-Oceans
Volume121
Issue number10
DOIs
Publication statusPublished - 18 Oct 2016

Fingerprint

Dive into the research topics of 'Glider observations of enhanced deep water upwelling at a shelf break canyon: A mechanism for cross-slope carbon and nutrient exchange'. Together they form a unique fingerprint.

Cite this