Abstract
Commercial success of algal-based biofuels depends on growth characteristics and lipid metabolism of the production species. The oleaginous microalgae, Thalassiosira pseudonana, Odontella aurita, Nannochloropsis oculata, Isochrysis galbana, Chromulina ochromonoides, and Dunaliella tertiolecta, were cultivated under a matrix of two temperatures (10 and 20°C) and two nutrient regimes (deplete and replete). For all species, a strong negative correlation between growth rate and lipid content was observed. Multiple stressors have no additive effect on lipid accumulation. Total oil content (fatty acid methyl esters, FAMEs, pg cell(-1)) was increased more by nutrient limitation than by temperature stress. In response to nutrient stress, N. oculata emerged as the most robust species with an increase in lipid accumulation of up to three to four-fold compared to the accumulation under nutrient sufficient conditions. Although stress conditions led to reduced fatty acid unsaturation in most taxa due to increased triacylglycerol (TAG) production, a high proportion of eicosapentaenoic acid (EPA) was maintained in O. aurita.
Original language | English |
---|---|
Article number | n/a |
Pages (from-to) | 439-449 |
Number of pages | 11 |
Journal | Bioresource Technology |
Volume | 129 |
Issue number | n/a |
DOIs | |
Publication status | Published - Feb 2013 |
Keywords
- Biofuel
- Fatty acid
- Growth
- Microalgae
- Stress physiology