Dynamical analysis of turbulent premixed hydrogen/air flames in the thin reaction zone regime

Efstathios Al Tingas, Roman Kashtanov, Francisco E. Hernández Pérez, Hong G. Im, Pietro Paolo Ciottoli, Riccardo Malpica Galassi, Mauro Valorani

Research output: Contribution to conferencePaper

Abstract

In the current study, tools generated from the computational singular perturbation (CSP) are used to analyze the dynamics that develops in a three-dimensional (3D) turbulent H2/air flame. On top of these tools, the recently proposed tangential stretch rate (TSR) approach is used to obtain physical understanding of the turbulent flame. The analysis is first conducted on a laminar premixed H2/air flame followed by the analysis of the 3D turbulent flame at three distinct time steps. Using algorithmic tools, the flame front was identified along with the dominant processes reaction and transport (diffusive/convective) processes. Furthermore, the overall role of kinetics/transport was determined at each part of the flame.

Original languageEnglish
Publication statusPublished - 1 Jan 2017
Event11th Asia-Pacific Conference on Combustion, ASPACC 2017 - Sydney, Australia
Duration: 10 Dec 201714 Dec 2017

Conference

Conference11th Asia-Pacific Conference on Combustion, ASPACC 2017
CountryAustralia
CitySydney
Period10/12/1714/12/17

    Fingerprint

Cite this

Tingas, E. A., Kashtanov, R., Hernández Pérez, F. E., Im, H. G., Ciottoli, P. P., Galassi, R. M., & Valorani, M. (2017). Dynamical analysis of turbulent premixed hydrogen/air flames in the thin reaction zone regime. Paper presented at 11th Asia-Pacific Conference on Combustion, ASPACC 2017, Sydney, Australia.