Abstract
The events of apoptotic cell death can be experimentally dissociated from each other in certain cell types. Here we demonstrate the ability of structurally diverse nitric oxide (NO) donating compounds to delay or enhance neutrophil apoptosis and to differentially influence distinct parameters of programmed cell death. We provide evidence that high concentrations of the NO donors GEA 3162, SPER/NO, and DEA/NO induce morphological and biochemical markers of neutrophil apoptosis, but that only DEA/NO causes a concomitant increase in DNA fragmentation as evidenced by nuclear propidium iodide intercalation and the classical laddering pattern of electrophoresed DNA. In contrast, both GEA 3162 and SPER/NO inhibit DNA cleavage in a time- and concentration-dependent manner. We are the first to show that DNA fragmentation can be dissociated from other changes of apoptosis in NO-treated neutrophils and that it may therefore be inappropriate to assess NO-induced apoptosis solely by measuring DNA fragmentation in this cell type.
Original language | English |
---|---|
Pages (from-to) | 1229-36 |
Number of pages | 8 |
Journal | Biochemical and Biophysical Research Communications |
Volume | 289 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2001 |