Abstract
The zebrafish is a powerful model organism for the analysis of human cardiovascular development and disease. Further, zebrafish are able to fully regenerate their hearts following injury. Understanding these processes at the protein level not only requires changes in protein concentration to be determined but also the rate at which these changes occur on a protein-by-protein basis. The ability to measure protein synthesis and degradation rates on a proteome-wide scale, using stable isotope labelling in conjunction with mass spectrometry is now a well-established experimental approach. With the advent of more selective and sensitive mass spectrometers, it is possible to accurately measure lower levels of stable isotope incorporation, even when sample is limited. In order to challenge the sensitivity of this approach, we successfully determined the synthesis rates of over 600 proteins from the cardiac muscle of the zebrafish using a diet where either 30% or 50% of the L-leucine was replaced with a stable isotope labelled analogue ([2H7]L-leucine]. It was possible to extract sufficient protein from individual zebrafish hearts to determine the incorporation rate of the label into hundreds of proteins simultaneously, with the two labelling regimens showing a good correlation of synthesis rates.
Original language | English |
---|---|
Pages (from-to) | 1398–1406 |
Number of pages | 8 |
Journal | Proteomics |
Volume | 16 |
Issue number | 9 |
DOIs | |
Publication status | Published - 5 Apr 2016 |
Keywords
- Protein synthesis
- stable isotopes
- zebrafish