TY - JOUR
T1 - COVID-19 Symptoms app analysis to foresee healthcare impacts
T2 - Evidence from Northern Ireland
AU - Sousa, José
AU - Barata, João
AU - Woerden, Hugo C van
AU - Kee, Frank
N1 - © 2021 Elsevier B.V. All rights reserved.
PY - 2021/12/20
Y1 - 2021/12/20
N2 - Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with the global pandemic crisis by providing near real-time, in situ information for the medical and governmental response. However, in such a dynamic and diverse environment, methods are still needed to support public health decision-making. This paper uses the lens of strong structuration theory to investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A self-supervised machine learning method measuring information entropy was applied to the Northern Ireland COVIDCare app. The findings reveal: (1) relevant stratifications of disease symptoms, (2) particularities in health-wealth networks, and (3) the predictive potential of artificial intelligence to extract entangled knowledge from data in COVID-related apps. The proposed method proved to be effective for near real-time in-situ analysis of COVID-19 progression and to focus and complement public health decisions. Our contribution is relevant to an understanding of SARS-COV-2 symptom entanglements in localized environments. It can assist decision-makers in designing both reactive and proactive health measures that should be personalised to the heterogeneous needs of different populations. Moreover, near real-time assessment of pandemic symptoms using digital technologies will be critical to create early warning systems of emerging SARS-CoV-2 strains and predict the need for healthcare resources.
AB - Mobile health (mHealth) technologies, such as symptom tracking apps, are crucial for coping with the global pandemic crisis by providing near real-time, in situ information for the medical and governmental response. However, in such a dynamic and diverse environment, methods are still needed to support public health decision-making. This paper uses the lens of strong structuration theory to investigate networks of COVID-19 symptoms in the Belfast metropolitan area. A self-supervised machine learning method measuring information entropy was applied to the Northern Ireland COVIDCare app. The findings reveal: (1) relevant stratifications of disease symptoms, (2) particularities in health-wealth networks, and (3) the predictive potential of artificial intelligence to extract entangled knowledge from data in COVID-related apps. The proposed method proved to be effective for near real-time in-situ analysis of COVID-19 progression and to focus and complement public health decisions. Our contribution is relevant to an understanding of SARS-COV-2 symptom entanglements in localized environments. It can assist decision-makers in designing both reactive and proactive health measures that should be personalised to the heterogeneous needs of different populations. Moreover, near real-time assessment of pandemic symptoms using digital technologies will be critical to create early warning systems of emerging SARS-CoV-2 strains and predict the need for healthcare resources.
U2 - 10.1016/j.asoc.2021.108324
DO - 10.1016/j.asoc.2021.108324
M3 - Article
C2 - 34955697
SN - 1568-4946
VL - 116
SP - 108324
JO - Applied soft computing
JF - Applied soft computing
ER -