Clinical Epigenetics

Antonia Pritchard (Editor), Luke Hesson (Editor)

Research output: Book/ReportBook

Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease of the lungs that is currently the fourth leading cause of death worldwide. Genetic factors account for only a small amount of COPD risk, but epigenetic mechanisms, including DNA methylation, have the potential to mediate the interactions between an individual's genetics and environmental exposure. DNA methylation is highly cell type-specific, and individual cell type studies of DNA methylation in COPD are sparse. Fibroblasts are present within the airway and parenchyma of the lung and contribute to the aberrant deposition of extracellular matrix in COPD. No assessment or comparison of genome-wide DNA methylation profiles in the airway and parenchymal fibroblasts from individuals with and without COPD has been undertaken. These data provide valuable insight into the molecular mechanisms contributing to COPD and the differing pathologies of small airways disease and emphysema in COPD. Methods: Genome-wide DNA methylation was evaluated at over 485,000 CpG sites using the Illumina Infinium HumanMethylation450 BeadChip array in the airway (non-COPD n = 8, COPD n = 7) and parenchymal fibroblasts (non-COPD n = 17, COPD n = 29) isolated from individuals with and without COPD. Targeted gene expression was assessed by qPCR in matched RNA samples.
Original languageEnglish
PublisherSpringer Nature
Number of pages265
ISBN (Electronic)9789811389580
ISBN (Print)9789811389573
DOIs
Publication statusPublished - Sep 2019

    Fingerprint

Cite this