Classification for Big Dataset of Bioacoustic Signals Based on Human Scoring System and Artificial Neural Network

Mohammad Pourhomayoun, Peter J. Dugan, Marian Popescu, Denise Risch, Hal Lewis, Christopher W. Clark

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose a method to improve sound classification performance by combining signal features, derived from the time-frequency spectrogram, with human perception. The method presented herein exploits an artificial neural network (ANN) and learns the signal features based on the human perception knowledge. The proposed method is applied to a large acoustic dataset containing 24 months of nearly continuous recordings. The results show a significant improvement in performance of the detection-classification system; yielding as much as 20% improvement in true positive rate for a given false positive rate.
Original languageUndefined/Unknown
Title of host publicationICML 2013 Workshop on Machine Learning for Bioacoustics
Publication statusPublished - 15 May 2013

Cite this

Pourhomayoun, M., Dugan, P. J., Popescu, M., Risch, D., Lewis, H., & Clark, C. W. (2013). Classification for Big Dataset of Bioacoustic Signals Based on Human Scoring System and Artificial Neural Network. In ICML 2013 Workshop on Machine Learning for Bioacoustics