TY - JOUR
T1 - Biogeochemical Consequences of Climate-Driven Changes in the Arctic
AU - Reed, Adam J.
AU - Tuerena, Robyn E.
AU - Archambault, Philippe
AU - Solan, Martin
N1 - Copyright © 2021 Reed, Tuerena, Archambault and Solan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CCBY).
PY - 2021/5/5
Y1 - 2021/5/5
N2 - The Arctic Ocean is warming at an unprecedented rate, leading to the loss of multi-year sea ice, and changes to stratification and ocean circulation patterns (Polyakov et al., 2017; Lind et al., 2018; Stroeve and Notz 2018). Increased discharge of freshwater (McClelland et al., 2006) and terrestrial organic matter into Arctic coastal water (Parmentier et al., 2017) further influence the timing of natural cycles. The ecological consequences of these changes manifest in adjusted primary productivity cycles (Lewis et al., 2020), alterations in the quality and quantity of organic matter reaching the seafloor (Krajewska et al., 2017; Stevenson and Abbott 2019; Olivier et al., 2020), benthic biogeochemical cycles (MacDonald et al., 2015; Solan et al., 2020) and the food-web (Yunda-Guarin et al., 2020). Mechanistic understanding of these processes requires continual revision, and in this research topic, we report new findings and emerging insights about how Arctic biogeochemical processes are responding to climate change and altering system dynamics. The contributions received present nuanced perspectives on the role of spatial and temporal variability, the connectivity between terrestrial and marine systems, the context dependency of organic matter degradation, and they highlight some emerging ecological consequences from a range of Arctic locations.
AB - The Arctic Ocean is warming at an unprecedented rate, leading to the loss of multi-year sea ice, and changes to stratification and ocean circulation patterns (Polyakov et al., 2017; Lind et al., 2018; Stroeve and Notz 2018). Increased discharge of freshwater (McClelland et al., 2006) and terrestrial organic matter into Arctic coastal water (Parmentier et al., 2017) further influence the timing of natural cycles. The ecological consequences of these changes manifest in adjusted primary productivity cycles (Lewis et al., 2020), alterations in the quality and quantity of organic matter reaching the seafloor (Krajewska et al., 2017; Stevenson and Abbott 2019; Olivier et al., 2020), benthic biogeochemical cycles (MacDonald et al., 2015; Solan et al., 2020) and the food-web (Yunda-Guarin et al., 2020). Mechanistic understanding of these processes requires continual revision, and in this research topic, we report new findings and emerging insights about how Arctic biogeochemical processes are responding to climate change and altering system dynamics. The contributions received present nuanced perspectives on the role of spatial and temporal variability, the connectivity between terrestrial and marine systems, the context dependency of organic matter degradation, and they highlight some emerging ecological consequences from a range of Arctic locations.
KW - arctic
KW - biogeochemistry
KW - climate change
KW - sediments
KW - organic matter
KW - permafrost
U2 - 10.3389/fenvs.2021.696909
DO - 10.3389/fenvs.2021.696909
M3 - Editorial
SN - 2296-665X
VL - 9
JO - Frontiers in Environmental Science
JF - Frontiers in Environmental Science
ER -