TY - JOUR
T1 - Bio-Optical evidence for increasing Phaeocystis dominance in the Barents Sea
AU - Orkney, Andrew
AU - Platt, Trevor
AU - Narayanaswamy, Bhavani
AU - Kostakis, Ina
AU - Bouman, Heather
N1 - © 2020 The Author(s)
Published by the Royal Society. All rights reserved.
PY - 2020/10/2
Y1 - 2020/10/2
N2 - Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a (chl-a) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms.
AB - Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a (chl-a) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms.
KW - climate
KW - phaeocystis
KW - remote-sensing
KW - ocean-colour
KW - phytoplankton
KW - Arctic
U2 - https://doi.org/10.1098/rsta.2019.0357
DO - https://doi.org/10.1098/rsta.2019.0357
M3 - Article
SN - 1471-2962
VL - 378
JO - Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences
IS - 2181
ER -